

Общество с ограниченной ответственностью «Проектное Бюро «ЖУКОВ И ПАРТНЕРЫ»

690001, Владивосток, ул. Пушкинская, 109 оф. 501 тел/факс: 8 (423) 226-37-95

E-mail: office@projectvl.ru

Многоквартирный жилой дом (корпус 1-3) со встроеннопристроенными помещениями и автостоянкой, расположенный в районе ул.Алеутская, 65а в г.Владивостоке

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 5. Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения, перечень инженерно-технических мероприятий и решений

Подраздел 7. Технологические решения

Книга 5.7.2. Вертикальный транспорт

19-02-01(K1)-ИОС5.7.2

Том 5.7.2

Инв. № подл. Подпись и дата Взам. инв. №

Общество с ограниченной ответственностью «Проектное Бюро «ЖУКОВ И ПАРТНЕРЫ»

690001, Владивосток, ул. Пушкинская, 109 оф. 501 тел/факс: 8 (423) 226-37-95

E-mail: office@projectvl.ru

Многоквартирный жилой дом (корп. 1-3) со встроеннопристроенными помещениями и автостоянкой, расположенный в районе ул.Алеутская, 65а в г.Владивостоке

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 5. Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения, перечень инженерно-технических мероприятий и решений

Подраздел 7. Технологические решения

Книга 5.7.2. Вертикальный транспорт

19-02-01(K1)-ИОС5.7.2

Том 5.7.2

Генеральный директор К.А. Жуков

Главный инженер проекта П.А. Иванов

Инв. № подл.

г. Владивосток 2021

Обозначение	Наименование	Прим. Стр.
1	2	3
19-02-01(К1)-ИОС5.7.2-С	Содержание	
19-02-01(К1)-СП	Состав проектной документации	
19-02-01(К1)-ИОС5.7.2.ПЗ	Текстовая часть:	
	1 Основания для разработки раздела	
	2 Перечень нормативной документации	
	3 Основные исходные данные	
	4 Основные технические решения	
	5 Расчёт пассажирских лифтов	
	6 Установочные чертежи	

Взам. инв. №										
Подпись и дата							19 – 02 – 01(K1) –	ИОС5.7	7.2 – C	
	Изм.	Кол. уч.	Лист	№ док	Подпись	Дата				
	Разра	б.	Cepe	бряков	CALLA!	05.21		Стадия	Лист	Листов
подл.								П		1
	ГИП Иванов			05.21	Содержание	00	ОО "Проект	гное Бюро		
Инв. №	Н. ко	нтр.	Кири	ллова		05.21	•		Жуков и па г. Владиво	артнеры"

Состав проектной документации по объекту: «Многоквартирный жилой дом (корпус 1-3) со встроенно-пристроенными помещениями и автостоянкой, расположенный в районе ул. Алеутская, 65а в г. Владивостоке» приведен в томе 1.1, шифр 19-02-01(К1)-СП. 19-02-01(К1)-СП Изм. Кол.уч Лист № док Подп. Дата ГАП Максимов 04.21 Стадия Лист Листов Разработал П Иванов 1 04.21 ГИП Иванов Состав проектной документации ООО «ПБ «Жуков и партнеры» Г.Владивосток

Взам. инв. №

Подп. и дата

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1 Основания для разработки раздела

Основанием для разработки проектной документации являются:

- решения заказчика
- договор на корректировку проектной документации №NVT 21/02-01 от 19.02.2021г. в редакции дополнительного соглашения №1 от 16.04.2021 г., утверждённое заказчиком;
- проектная документация по объекту «Многоквартирный жилой дом (корпус 1-3) со встроенно-пристроенными помещениями и автостоянкой, расположенный в районе ул. Алеутская, 65а в г. Владивостоке», получившая положительное заключение экспертизы №25-2-1-3-042787-2020 от 04 сентября 2020г., выданное ООО «Эксперт-Проект».

2 Перечень нормативной документации

При проведении работ использовались следующие нормативно-технические документы, действующие на территории Российской Федерации:

- СП 54.13330.2011 «Здания жилые многоквартирные»;
- ГОСТ Р 52941-2008 «Лифты пассажирские. Проектирование систем вертикального транспорта в жилых зданиях»;
 - СП 118.13330.2012 «Общественные здания и сооружения»;
 - ПУЭ изд. 7 «Правила устройства электроустановок»;
 - ТР ТС 011/2011 «Технический регламент таможенного союза. Безопасность лифтов»

3 Основные исходные данные

Характеристика объекта

Проектируемое сооружение представляет собой три односекционных многоквартирных корпуса, расположенных на едином стилобате, в который встроена трехуровневая подземная автостоянка. Над верхним жилым этажом каждого корпуса предусмотрено техническое пространство высотой 1,79 м для прокладки инженерных коммуникаций. Первые этажи корпусов нежилые и предназначены для размещения: входных групп в жилую часть; офисных помещений класса функциональной пожарной опасности Ф4 3: магазина класса функциональной пожарной опасности Ф3 1

И		Н.кон	тр.	Кирил	лова		05.21			г. Владиво	СТОК			
Инв.№		ГИП		Ивано	В		05.21							
подл.								П 1						
<u> </u>		Разра	ботал	Серебр	яков -	CAL	05.21		Стадия	Лист	Листов			
l=		Изм.	Кол. уч	Лист	N.док	Подп.	Дата	. ,						
Подпись								19 – 02 – 01(К1) – ИОС5.7.2.ПЗ						
ись и дата														
	опасности Ф4.3; магазина класса функциональной пожарной опасности Ф3.1.													
Взам.					1 2			асть; офисных помещений класса ф			жарной			
Z			KOMN	луник	аций.	Первы	іе эта	ажи корпусов нежилые и предназ	вначены д	іля разме	ещения:			

В стилобате располагается трехуровневая подземная автостоянка. Автостоянка запроектирована под корпусами и дворовой территорией в границах отведенного земельного участка. Форма автостоянки многоугольная, общий максимальный габарит – 77,15 х 94,2м. Автостоянка имеет переменную этажность.

Минус первый уровень на отм. -4,500 м и минус второй уровень на отм. -8,100 м имеют большую площадь и расположены под всеми тремя корпусами.

Минус третий уровень на отм. -11,700 м имеет меньшую площадь и не распространяется под Корпус 3. Общая вместимость автостоянки – 294 м/м.

За относительную отметку 0,000 принята абсолютная отметка 34,00 м, которая соответствует уровню чистого пола первого этажа.

Входы в жилые корпуса осуществляются со стороны дворового пространства. При всех наружных дверях входов в жилую часть согласно п. 9.19 СП 54.13330.2016 устанавливаются двойные тамбуры глубиной не менее 2,45 м при ширине не менее 1,6 м.

Количество этажей по корпусам 1/2/3-30/23/17, включая техническое пространство и три подземных этажа под корпусами № 1 и 2, два подземных этажа под корпусом № 3. Этажность по корпусам 1/2/3 - 27, 20 и 15 этажей.

Высота подземных этажей – от 3,2 м до 3,3 м (от ур.ч.п. до потолка)

Высота 1 этажа 4,5 м (от ур.ч.п. до потолка)

Высота типовых этажей – 3 м (от ур.ч.п. до потолка).

4 Основные технические решения

Для вертикального перемещения грузо- и пассажиропотоков в жилой части здания в каждом корпусе предусматривается установка лифтов: 2 лифта по 400 кг, 1 лифт грузопассажирский — 1000 кг, скорость не менее 1,6 м/с. Лифты № 1,3 опускаются в подземное пространство. Лифт №3 имеет функцию «перевозки пожарных подразделений» и обеспечивает доступность МГН на этажи выше первого. Минимальные внутренние размеры кабины лифта для МГН предусмотрены в соответствии с ГОСТ Р 53770-2010 и ГОСТ Р 51631-2008 — 2100х1100мм. Лифт №2 останавливается только на наземных этажах.

При установке лифтов с различными параметрами достаточность их провозной способности и показатель транспортной комфортности определяют по формулам:

 K_p – коэффициент использования провозной способности лифтов

$$K_p = \frac{A_{1p}}{\sum P_n}$$

где: A_{1p} – расчетный часовой пассажиропоток;

 $\sum P_{\pi}$ - сумма провозной способности группы лифтов, входящих в группу.

 t_u - интервал движения лифтов с различными параметрами

$$t_u = \frac{\sum T}{n}$$

где: $\sum T$ – суммарное время круговых рейсов входящих, в группу лифтов с различными параметрами;

n – число лифтов.

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

Инв.№ подл.

19 - 02 - 01(K1) - ИОС5.7.2.П3

Лист

Расчёт пассажирских лифтов

Расчет группы пассажирских лифтов жилого корпуса №1

Лифтовая группа № 1 располагается в жилой части в осях 4.1-6.1/Д.1-Ж.1. В состав группы входят:

лифт №1: грузоподъемность - 400 кг, скоростью V=1,6 м/с;

лифт №2: грузоподъемность - 400 кг, скоростью V=1,6 м/с;

лифт №3: грузоподъемность - 1000 кг, скоростью V=1,6 м/с;

Расчет основан на сопоставлении времени кругового рейса лифта с выбранным интервалом движения лифтов.

В качестве расчетного принимают пассажиропоток, характеризующий число пассажиров, подлежащих перевозке лифтами в течение пятиминутного пикового периода.

Расчетный пятиминутный пассажиропоток при равномерной заселенности этажей ${\rm A_1},$ чел./5 мин

$$A_1 = A \frac{(N - N_H)i}{100 * N} = 23.68$$

где: А – жильцы всего здания – 296;

N — число заселенных этажей — 26;

 N_{H^-} число этажей, жильцы которого не пользуются лифтами - 0;

i - показатель интенсивности пассажиропотока – 8%.

Расчетный часовой пассажиропоток А_{1р}, чел.-ч

$$A_{1p} = 12A_1 = 284.16$$

Провозную способность пассажирского лифта, работающего в условиях двухстороннего пассажиропотока $P_{\rm n}$, чел.-ч, рассчитываем по формуле

$$P_{\pi} = \frac{3600E(\gamma^n + \gamma^c)}{T}$$

где: E — номинальная вместимость лифта;

 γ^n – коэффициент заполнения кабины лифта при подъеме – 0,8;

 γ^c – коэффициент заполнения кабины лифта при спуске – 0,4;

Т - Время кругового рейса лифта при двухстороннем пассажиропотоке.

Рассчитаем провозную способность пассажирского лифта №1(Р_{л1}).

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

19 - 02 - 010	(K1)	– ИОС5.7.2.ПЗ
-> 0- 0-1		110 00000

$$P_{n1} = \frac{3600E_3(\gamma^n + \gamma^c)}{T_1} = 121.41$$

где: E_1 – номинальная вместимость лифта – 4 чел;

 T_1 - время кругового рейса лифта при двухстороннем пассажиропотоке рассчитывается по формуле:

$$T_1 = \frac{2H_e - h(N_e^n + N_e^c + 1)}{V} + k_t[(t_1 + t_2 + t_3)(N_e^n + N_e^c + 1) + t_4^n + t_4^c + t_5^n + t_5^c] = 142.33$$

где: H_{6} – вероятная высота подъема лифта, м:

$$H_e = k_n H_{max} = 69.72$$

 k_n – коэффициент вероятной высоты подъема, равный – 0,7;

 H_{max} — максимальная высота подъема лифта до наивысшего обслуживаемого этажа — 99,6;

h – путь, который проходит лифт при разгоне до номинальной скорости и торможении от номинальной скорости до остановки, м – 3,5;

V – скорость лифта – 1,6 м/с;

 N_{s}^{n} , N_{s}^{c} - число вероятных остановок лифта при подъеме и спуске соответственно:

$$N_e^n = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^n E_1} = 3.084$$

$$N_e^c = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^c E_1} = 1.584$$

 N_1 – число обслуживаемых лифтом этажей в здании – 30;

 k_t — коэффициент, учитывающий дополнительные затраты времени при работе лифта – 1,05;

 t_1 - затраты времени на ускорение и замедление лифта, с;

 t_2 - затраты времени на пуск лифта пассажиром, с;

 t_3 - затраты времени на открывание и закрывание дверей, с;

Принимаем значение $t_1 + t_2 + t_3 = 10c$

 t_4^n, t_4^c - затраты времени на вход пассажиров в кабину лифта при подъеме и спуске соответственно, с;

 t_5^n, t_5^c - затраты времени на выход пассажиров из кабины лифта при подъеме и спуске соответственно, с;

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

$$t_4^n + t_5^n = 2\Delta t \gamma^n E_1 = 5.12$$

Время на вход и выход пассажиров при спуске вычисляют по формуле:

$$t_4^c + t_5^c = 2\Delta t \gamma^c E_1 = 2.56$$

 Δt — число обслуживаемых лифтом этажей в здании, при ширине дверного приема более 1000 мм — 0.8с.

Рассчитаем провозную способность пассажирского лифта №2($P_{\pi 2}$).

Расчетный пятиминутный пассажиропоток при равномерной заселенности этажей A_1 , чел./5 мин

$$A_2 = A \frac{(N - N_H)i}{100 * N} = 23.68$$

где: А – жильцы всего здания – 296;

N — число заселенных этажей — 26;

 $N_{H^{-}}$ число этажей, жильцы которого не пользуются лифтами - 0;

i - показатель интенсивности пассажиропотока – 8%.

Расчетный часовой пассажиропоток A_{2p} , чел.-ч

$$A_{2p} = 12A_2 = 284.16$$

Провозную способность пассажирского лифта, работающего в условиях двухстороннего пассажиропотока P_{π} , чел.-ч, рассчитываем по формуле

$$P_{n2} = \frac{3600E(\gamma^n + \gamma^c)}{T}$$

где: E – номинальная вместимость лифта;

 γ^n – коэффициент заполнения кабины лифта при подъеме – 0,8;

 γ^c – коэффициент заполнения кабины лифта при спуске – 0,4;

T - Время кругового рейса лифта при двухстороннем пассажиропотоке.

Рассчитаем провозную способность пассажирского лифта $N \ge 2(P_{_{\it Л}2})$.

$$P_{n2} = \frac{3600E_3(\gamma^n + \gamma^c)}{T_1} = 121.41$$

где: E_3 – номинальная вместимость лифта – 4 чел;

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

19 _	02 –	01(K1)	– ИОС5.7.2.ПЗ
1/	U	UI(IXI)	11003.7.2.113

$$T_2 = \frac{2H_e - h(N_e^n + N_e^c + 1)}{V} + k_t[(t_1 + t_2 + t_3)(N_e^n + N_e^c + 1) + t_4^n + t_4^c + t_5^n + t_5^c] = 142,33$$

где: H_{e} – вероятная высота подъема лифта, м:

$$H_e = k_n H_{max} = 69,72$$

 k_n – коэффициент вероятной высоты подъема, равный – 0,7;

 H_{max} — максимальная высота подъема лифта до наивысшего обслуживаемого этажа — 99,6;

h – путь, который проходит лифт при разгоне до номинальной скорости и торможении от номинальной скорости до остановки, м – 3,5;

V – скорость лифта – 1,6 м/с;

 $N_{\scriptscriptstyle B}^n$, $N_{\scriptscriptstyle B}^c$ - число вероятных остановок лифта при подъеме и спуске соответственно:

$$N_e^n = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^n E_1} = 3.084$$

$$N_e^c = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^c E_1} = 1.584$$

 N_1 – число обслуживаемых лифтом этажей в здании – 30;

 k_t — коэффициент, учитывающий дополнительные затраты времени при работе лифта – 1.05:

 t_1 - затраты времени на ускорение и замедление лифта, с;

 t_2 - затраты времени на пуск лифта пассажиром, с;

 t_3 - затраты времени на открывание и закрывание дверей, с;

Принимаем значение $t_1 + t_2 + t_3 = 10c$

 t_4^n , t_4^c - затраты времени на вход пассажиров в кабину лифта при подъеме и спуске соответственно, с;

 t_5^n, t_5^c - затраты времени на выход пассажиров из кабины лифта при подъеме и спуске соответственно, с;

Время на вход и выход пассажиров при подъеме вычисляют по формуле:

$$t_4^n + t_5^n = 2\Delta t \gamma^n E_1 = 5.12$$

Время на вход и выход пассажиров при спуске вычисляют по формуле:

$$t_4^c + t_5^c = 2\Delta t \gamma^c E_1 = 2.56$$

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

Инв.№ подл.

Рассчитаем провозную способность пассажирского лифта №3($P_{\pi 3}$).

Расчетный пятиминутный пассажиропоток при равномерной заселенности этажей A_3 , чел./5 мин

$$A_3 = A \frac{(N - N_H)i}{100 * N} = 23.68$$

где: A – жильцы всего здания –296;

N — число заселенных этажей — 26;

 N_{H^-} число этажей, жильцы которого не пользуются лифтами - 0;

i - показатель интенсивности пассажиропотока – 8%.

Расчетный часовой пассажиропоток A_{3p} , чел.-ч

$$A_{3n} = 12A_3 = 284.16$$

Провозную способность пассажирского лифта, работающего в условиях двухстороннего пассажиропотока P_{π} , чел.-ч, рассчитываем по формуле

$$P_{\scriptscriptstyle A3} = \frac{3600E(\gamma^n + \gamma^c)}{T}$$

где: E — номинальная вместимость лифта;

 γ^n – коэффициент заполнения кабины лифта при подъеме – 0,8;

 γ^c – коэффициент заполнения кабины лифта при спуске – 0,4;

Т - Время кругового рейса лифта при двухстороннем пассажиропотоке.

Рассчитаем провозную способность пассажирского лифта $N = 3(P_{\pi 3})$.

$$P_{n3} = \frac{3600E_3(\gamma^n + \gamma^c)}{T_1} = 209.216$$

где: E_3 – номинальная вместимость лифта –10 чел;

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

Инв.№ подл.

$$T_3 = \frac{2H_e - h(N_e^n + N_e^c + 1)}{V} + k_t[(t_1 + t_2 + t_3)(N_e^n + N_e^c + 1) + t_4^n + t_4^c + t_5^n + t_5^c] = 206.485$$

где: H_{e} – вероятная высота подъема лифта, м:

$$H_e = k_n H_{max} = 69.72$$

 k_n – коэффициент вероятной высоты подъема, равный – 0,7;

 H_{max} — максимальная высота подъема лифта до наивысшего обслуживаемого этажа — 99,6;

h – путь, который проходит лифт при разгоне до номинальной скорости и торможении от номинальной скорости до остановки, м – 3,5;

V – скорость лифта – 1,6 м/с;

 $N_{\scriptscriptstyle B}^n$, $N_{\scriptscriptstyle B}^c$ - число вероятных остановок лифта при подъеме и спуске соответственно:

$$N_e^n = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^n E_1} = 7.126$$

$$N_e^c = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^c E_1} = 3.804$$

 N_1 – число обслуживаемых лифтом этажей в здании – 30;

 k_t — коэффициент, учитывающий дополнительные затраты времени при работе лифта – 1,05;

 t_1 - затраты времени на ускорение и замедление лифта, с;

 t_2 - затраты времени на пуск лифта пассажиром, с;

 t_3 - затраты времени на открывание и закрывание дверей, с;

Принимаем значение $t_1 + t_2 + t_3 = 10 c$

 t_4^n, t_4^c - затраты времени на вход пассажиров в кабину лифта при подъеме и спуске соответственно, с;

 t_5^n, t_5^c - затраты времени на выход пассажиров из кабины лифта при подъеме и спуске соответственно, с;

Время на вход и выход пассажиров при подъеме вычисляют по формуле:

$$t_4^n + t_5^n = 2\Delta t \gamma^n E_1 = 12.8$$

Время на вход и выход пассажиров при спуске вычисляют по формуле:

$$t_4^c + t_5^c = 2\Delta t \gamma^c E_1 = 6.4$$

 Δt — число обслуживаемых лифтом этажей в здании, при ширине дверного приема более 1000 мм — 0,8c;

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

Инв.№ подл.

$$K_p = \frac{A_{1p}}{P_{n1} + P_{n2} + P_{n3}} = 0,629$$

 t_u - интервал движения группы лифтов №1, лифты с различными параметрами:

$$t_u = \frac{T_1 + T_2 + T_3}{n^2} = 54.571$$

Согласно данному расчету используемых типов лифтов и их количества достаточно для обеспечения пиковых периодов использования лифтов. Уровень транспортной комфортности – отличный.

Расчет группы пассажирских лифтов жилого корпуса №2

Лифтовая группа № 2 располагается в жилой части в осях $4.2\text{-}6.2/\Gamma.2\text{-}E.2$. В состав группы входят:

лифт №1: грузоподъемность - 400 кг, скоростью V=1,6 м/с;

лифт №2: грузоподъемность - 400 кг, скоростью V=1,6 м/с;

лифт №3: грузоподъемность - 1000 кг, скоростью V=1,6 м/с;

Расчет основан на сопоставлении времени кругового рейса лифта с выбранным интервалом движения лифтов.

В качестве расчетного принимают пассажиропоток, характеризующий число пассажиров, подлежащих перевозке лифтами в течение пятиминутного пикового периода.

Расчетный пятиминутный пассажиропоток при равномерной заселенности этажей ${\rm A_1},$ чел./5 мин

$$A_1 = A \frac{(N - N_H)i}{100 * N} = 15.44$$

где: А – жильцы всего здания – 193;

N – число заселенных этажей – 19;

 N_{H^-} число этажей, жильцы которого не пользуются лифтами - 0;

i - показатель интенсивности пассажиропотока – 8%.

Расчетный часовой пассажиропоток A_{1p} , чел.-ч

$$A_{1p} = 12A_1 = 185.28$$

Провозную способность пассажирского лифта, работающего в условиях двухстороннего пассажиропотока $P_{\rm n}$, чел.-ч, рассчитываем по формуле

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

19 _	02 –	01(K1)	– ИОС5.7.2.ПЗ
1/	U	UI(IXI)	11003.7.2.113

$$P_{_{\Pi}} = \frac{3600E(\gamma^n + \gamma^c)}{T}$$

где: E — номинальная вместимость лифта;

 γ^{n} – коэффициент заполнения кабины лифта при подъеме – 0,8;

 γ^c – коэффициент заполнения кабины лифта при спуске – 0,4;

Т - Время кругового рейса лифта при двухстороннем пассажиропотоке.

Рассчитаем провозную способность пассажирского лифта №1(Р_{л1}).

$$P_{\pi 1} = \frac{3600E_3(\gamma^n + \gamma^c)}{T_1} = 142.5$$

где: E_1 – номинальная вместимость лифта – 4 чел;

 T_1 - время кругового рейса лифта при двухстороннем пассажиропотоке рассчитывается по формуле:

$$T_1 = \frac{2H_e - h(N_e^n + N_e^c + 1)}{V} + k_t[(t_1 + t_2 + t_3)(N_e^n + N_e^c + 1) + t_4^n + t_4^c + t_5^n + t_5^c] = 121.26$$

где: H_{6} – вероятная высота подъема лифта, м:

$$H_e = k_n H_{max} = 53.13$$

 k_n – коэффициент вероятной высоты подъема, равный – 0,7;

 H_{max} — максимальная высота подъема лифта до наивысшего обслуживаемого этажа — 75.9;

h – путь, который проходит лифт при разгоне до номинальной скорости и торможении от номинальной скорости до остановки, м – 3,5;

V – скорость лифта – 1,6 м/с;

 $N_{\scriptscriptstyle g}^n$, $N_{\scriptscriptstyle g}^c$ - число вероятных остановок лифта при подъеме и спуске соответственно:

$$N_e^n = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^n E_1} = 3.049$$

$$N_e^c = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^c E_1} = 1.579$$

 N_1 – число обслуживаемых лифтом этажей в здании – 23;

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

 k_t – коэффициент, учитывающий дополнительные затраты времени при работе лифта – 1,05;

 t_1 - затраты времени на ускорение и замедление лифта, с;

 t_2 - затраты времени на пуск лифта пассажиром, с;

 t_3 - затраты времени на открывание и закрывание дверей, с;

Принимаем значение $t_1 + t_2 + t_3 = 10c$

 t_4^n, t_4^c - затраты времени на вход пассажиров в кабину лифта при подъеме и спуске соответственно, с;

 t_5^n , t_5^c - затраты времени на выход пассажиров из кабины лифта при подъеме и спуске соответственно, c;

Время на вход и выход пассажиров при подъеме вычисляют по формуле:

$$t_4^n + t_5^n = 2\Delta t \gamma^n E_1 = 5.12$$

Время на вход и выход пассажиров при спуске вычисляют по формуле:

$$t_4^c + t_5^c = 2\Delta t \gamma^c E_1 = 2.56$$

 Δt — число обслуживаемых лифтом этажей в здании, при ширине дверного приема более $1000 \ \text{мм} - 0.8c$.

Рассчитаем провозную способность пассажирского лифта №2($P_{\pi 2}$).

Расчетный пятиминутный пассажиропоток при равномерной заселенности этажей A_1 , чел./5 мин

$$A_2 = A \frac{(N - N_H)i}{100 * N} = 15.44$$

где: А – жильцы всего здания – 193;

N — число заселенных этажей — 19;

 N_{H^-} число этажей, жильцы которого не пользуются лифтами - 0;

i - показатель интенсивности пассажиропотока – 8%.

Расчетный часовой пассажиропоток A_{2p} , чел.-ч

$$A_{2p} = 12A_2 = 185.28$$

Провозную способность пассажирского лифта, работающего в условиях двухстороннего пассажиропотока $P_{\scriptscriptstyle Л}$, чел.-ч, рассчитываем по формуле

$$P_{n2} = \frac{3600E(\gamma^n + \gamma^c)}{T}$$

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

19 –	02 –	01(K1) -	- ИОС5.7.2.ПЗ
1/	U		110 03.7.2.113

где: E — номинальная вместимость лифта;

 γ^n – коэффициент заполнения кабины лифта при подъеме – 0,8;

 γ^c – коэффициент заполнения кабины лифта при спуске – 0,4;

Т - Время кругового рейса лифта при двухстороннем пассажиропотоке.

Рассчитаем провозную способность пассажирского лифта №2(P_{n2}).

$$P_{n2} = \frac{3600E_3(\gamma^n + \gamma^c)}{T_1} = 150.48$$

где: E_3 – номинальная вместимость лифта – 4 чел;

 T_3 - время кругового рейса лифта при двухстороннем пассажиропотоке рассчитывается по формуле:

$$T_2 = \frac{2H_e - h(N_e^n + N_e^c + 1)}{V} + k_t[(t_1 + t_2 + t_3)(N_e^n + N_e^c + 1) + t_4^n + t_4^c + t_5^n + t_5^c] = 114,83$$

где: H_g – вероятная высота подъема лифта, м:

$$H_e = k_n H_{max} = 48,09$$

 k_n – коэффициент вероятной высоты подъема, равный – 0,7;

 H_{max} — максимальная высота подъема лифта до наивысшего обслуживаемого этажа -68,7;

h — путь, который проходит лифт при разгоне до номинальной скорости и торможении от номинальной скорости до остановки, м — 3,5;

V – скорость лифта – 1,6 м/с;

 $N_{\!\scriptscriptstyle g}^n$, $N_{\!\scriptscriptstyle g}^c$ - число вероятных остановок лифта при подъеме и спуске соответственно:

$$N_e^n = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^n E_1} = 3.036$$

$$N_e^c = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^c E_1} = 1.577$$

 N_1 – число обслуживаемых лифтом этажей в здании – 21;

 k_t – коэффициент, учитывающий дополнительные затраты времени при работе лифта – 1,05:

 t_1 - затраты времени на ускорение и замедление лифта, с;

 t_2 - затраты времени на пуск лифта пассажиром, с;

 t_3 - затраты времени на открывание и закрывание дверей, с;

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

19 –	02 –	01 <i>(</i> K1) – ИС	C5.7.2.	ПЗ
1	-	OILI	,	<i></i>	

Принимаем значение $t_1 + t_2 + t_3 = 10c$

 t_4^n , t_4^c - затраты времени на вход пассажиров в кабину лифта при подъеме и спуске соответственно, с;

 t_5^n, t_5^c - затраты времени на выход пассажиров из кабины лифта при подъеме и спуске соответственно, с;

Время на вход и выход пассажиров при подъеме вычисляют по формуле:

$$t_4^n + t_5^n = 2\Delta t \gamma^n E_1 = 5.12$$

Время на вход и выход пассажиров при спуске вычисляют по формуле:

$$t_4^c + t_5^c = 2\Delta t \gamma^c E_1 = 2.56$$

 Δt — число обслуживаемых лифтом этажей в здании, при ширине дверного приема более 1000 мм — 0,8c;

Рассчитаем провозную способность пассажирского лифта №3($P_{\pi 3}$).

Расчетный пятиминутный пассажиропоток при равномерной заселенности этажей A_3 , чел./5 мин

$$A_3 = A \frac{(N - N_H)i}{100 * N} = 15.44$$

где: А – жильцы всего здания – 193;

N — число заселенных этажей — 19;

 N_{H^-} число этажей, жильцы которого не пользуются лифтами - 0;

i - показатель интенсивности пассажиропотока – 8%.

Расчетный часовой пассажиропоток A_{3p} , чел.-ч

$$A_{3p} = 12A_3 = 185.28$$

Провозную способность пассажирского лифта, работающего в условиях двухстороннего пассажиропотока $P_{\scriptscriptstyle Л}$, чел.-ч, рассчитываем по формуле

$$P_{\pi 3} = \frac{3600E(\gamma^n + \gamma^c)}{T}$$

где: E — номинальная вместимость лифта;

 γ^n – коэффициент заполнения кабины лифта при подъеме – 0,8;

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

Инв.№ подл.

Т - Время кругового рейса лифта при двухстороннем пассажиропотоке.

Рассчитаем провозную способность пассажирского лифта №3($P_{\pi 3}$).

$$P_{n3} = \frac{3600E_3(\gamma^n + \gamma^c)}{T_1} = 235.753$$

где: E_3 – номинальная вместимость лифта –10 чел;

 T_3 - время кругового рейса лифта при двухстороннем пассажиропотоке рассчитывается по формуле:

$$T_3 = \frac{2H_e - h(N_e^n + N_e^c + 1)}{V} + k_t[(t_1 + t_2 + t_3)(N_e^n + N_e^c + 1) + t_4^n + t_4^c + t_5^n + t_5^c] = 183.24$$

где: H_{g} – вероятная высота подъема лифта, м:

$$H_e = k_n H_{max} = 53.13$$

 k_n – коэффициент вероятной высоты подъема, равный – 0,7;

 H_{max} — максимальная высота подъема лифта до наивысшего обслуживаемого этажа — 75,9;

h – путь, который проходит лифт при разгоне до номинальной скорости и торможении от номинальной скорости до остановки, м – 3,5;

V – скорость лифта – 1,6 м/с;

 $N_{\scriptscriptstyle g}^n$, $N_{\scriptscriptstyle g}^c$ - число вероятных остановок лифта при подъеме и спуске соответственно:

$$N_e^n = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^n E_1} = 6.883$$

$$N_e^c = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^c E_1} = 3.747$$

 N_1 – число обслуживаемых лифтом этажей в здании – 23;

 k_t – коэффициент, учитывающий дополнительные затраты времени при работе лифта – 1,05;

 t_1 - затраты времени на ускорение и замедление лифта, с;

 t_2 - затраты времени на пуск лифта пассажиром, с;

 t_3 - затраты времени на открывание и закрывание дверей, с;

Принимаем значение $t_1 + t_2 + t_3 = 10 c$

 t_4^n , t_4^c - затраты времени на вход пассажиров в кабину лифта при подъеме и спуске соответственно, с;

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

Инв.№ подл.

Время на вход и выход пассажиров при подъеме вычисляют по формуле:

$$t_4^n + t_5^n = 2\Delta t \gamma^n E_1 = 12.8$$

Время на вход и выход пассажиров при спуске вычисляют по формуле:

$$t_4^c + t_5^c = 2\Delta t \gamma^c E_1 = 6.4$$

 Δt — число обслуживаемых лифтом этажей в здании, при ширине дверного приема более 1000 мм — 0,8c;

 K_p – коэффициент использования провозной способности группы лифтов жилого корпуса №2:

$$K_p = \frac{A_{1p}}{P_{n1} + P_{n2} + P_{n3}} = 0.35$$

 t_u - интервал движения группы лифтов №1, лифты с различными параметрами:

$$t_u = \frac{T_1 + T_2 + T_3}{n^2} = 46.593$$

Согласно данному расчету используемых типов лифтов и их количества достаточно для обеспечения пиковых периодов использования лифтов. Уровень транспортной комфортности – отличный.

Расчет группы пассажирских лифтов жилого корпуса №3

Лифтовая группа № 3 располагается в жилой части в осях 4.3-6.3/Д.3-Ж.3. В состав группы входят:

лифт №1: грузоподъемность - 400 кг, скоростью V=1,6 м/с;

лифт №2: грузоподъемность - 400 кг, скоростью V=1,6 м/с;

лифт №3: грузоподъемность - 1000 кг, скоростью V=1,6 м/с;

Расчет основан на сопоставлении времени кругового рейса лифта с выбранным интервалом движения лифтов.

В качестве расчетного принимают пассажиропоток, характеризующий число пассажиров, подлежащих перевозке лифтами в течение пятиминутного пикового периода.

Расчетный пятиминутный пассажиропоток при равномерной заселенности этажей ${\rm A_1},$ чел./5 мин

$$A_1 = A \frac{(N - N_H)i}{100 * N} = 13.044$$

где: А – жильцы всего здания – 163;

N — число заселенных этажей — 14;

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

19 – 02 –	01(K1) – ИОС5.7.2.ПЗ
	0 - (, 1100011113

 N_{H^-} число этажей, жильцы которого не пользуются лифтами - 0;

i - показатель интенсивности пассажиропотока – 8%.

Расчетный часовой пассажиропоток A_{1p} , чел.-ч

$$A_{1p} = 12A_1 = 156.48$$

Провозную способность пассажирского лифта, работающего в условиях двухстороннего пассажиропотока P_{π} , чел.-ч, рассчитываем по формуле

$$P_{\pi} = \frac{3600E(\gamma^n + \gamma^c)}{T}$$

где: E – номинальная вместимость лифта;

 γ^n – коэффициент заполнения кабины лифта при подъеме – 0,8;

 γ^c – коэффициент заполнения кабины лифта при спуске – 0,4;

Т - Время кругового рейса лифта при двухстороннем пассажиропотоке.

Рассчитаем провозную способность пассажирского лифта $Next{2}1(P_{\pi 1})$.

$$P_{\pi 1} = \frac{3600E_3(\gamma^n + \gamma^c)}{T_1} = 167.658$$

где: E_1 – номинальная вместимость лифта – 4 чел;

 T_1 - время кругового рейса лифта при двухстороннем пассажиропотоке рассчитывается по формуле:

$$T_1 = \frac{2H_s - h(N_s^n + N_s^c + 1)}{V} + k_t[(t_1 + t_2 + t_3)(N_s^n + N_s^c + 1) + t_4^n + t_4^c + t_5^n + t_5^c] = 103.07$$

где: H_{6} – вероятная высота подъема лифта, м:

$$H_e = k_n H_{max} = 39.06$$

 k_n – коэффициент вероятной высоты подъема, равный – 0,7;

 H_{max} — максимальная высота подъема лифта до наивысшего обслуживаемого этажа — 55,8;

h – путь, который проходит лифт при разгоне до номинальной скорости и торможении от номинальной скорости до остановки, м – 3,5;

V – скорость лифта – 1,6 м/с;

 N_{6}^{n} , N_{6}^{c} - число вероятных остановок лифта при подъеме и спуске соответственно:

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

Инв.№ подл.

19 - 02 - 01(K1) - ИОС5.7.2.П3

Лист

$$N_e^n = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^n E_1} = 2.985$$

$$N_e^c = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^c E_1} = 1.57$$

 N_1 – число обслуживаемых лифтом этажей в здании – 16;

 k_t — коэффициент, учитывающий дополнительные затраты времени при работе лифта – 1.05:

 t_1 - затраты времени на ускорение и замедление лифта, с;

 t_2 - затраты времени на пуск лифта пассажиром, с;

 t_3 - затраты времени на открывание и закрывание дверей, с;

Принимаем значение $t_1 + t_2 + t_3 = 10c$

 t_4^n, t_4^c - затраты времени на вход пассажиров в кабину лифта при подъеме и спуске соответственно, с;

 t_5^n , t_5^c - затраты времени на выход пассажиров из кабины лифта при подъеме и спуске соответственно. c:

Время на вход и выход пассажиров при подъеме вычисляют по формуле:

$$t_4^n + t_5^n = 2\Delta t \gamma^n E_1 = 5.12$$

Время на вход и выход пассажиров при спуске вычисляют по формуле:

$$t_4^c + t_5^c = 2\Delta t \gamma^c E_1 = 2.56$$

Рассчитаем провозную способность пассажирского лифта №2($P_{\pi 2}$).

Расчетный пятиминутный пассажиропоток при равномерной заселенности этажей A_2 , чел./5 мин

$$A_2 = A \frac{(N - N_H)i}{100 * N} = 13.04$$

где: А – жильцы всего здания – 163;

N — число заселенных этажей — 14;

 N_{H^-} число этажей, жильцы которого не пользуются лифтами - 0;

i - показатель интенсивности пассажиропотока – 8%.

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

$$A_{2p} = 12A_2 = 156.48$$

Провозную способность пассажирского лифта, работающего в условиях двухстороннего пассажиропотока P_{π} , чел.-ч, рассчитываем по формуле

$$P_{n2} = \frac{3600E(\gamma^n + \gamma^c)}{T}$$

где: E — номинальная вместимость лифта;

 γ^n – коэффициент заполнения кабины лифта при подъеме – 0,8;

 γ^c – коэффициент заполнения кабины лифта при спуске – 0,4;

T - Время кругового рейса лифта при двухстороннем пассажиропотоке.

Рассчитаем провозную способность пассажирского лифта №2(P_{n2}).

$$P_{n2} = \frac{3600E_3(\gamma^n + \gamma^c)}{T_1} = 180.57$$

где: E_3 – номинальная вместимость лифта – 4 чел;

 T_3 - время кругового рейса лифта при двухстороннем пассажиропотоке рассчитывается по формуле:

$$T_2 = \frac{2H_e - h(N_e^n + N_e^c + 1)}{V} + k_t[(t_1 + t_2 + t_3)(N_e^n + N_e^c + 1) + t_4^n + t_4^c + t_5^n + t_5^c] = 95,696$$

где: H_{e} – вероятная высота подъема лифта, м:

$$H_{\scriptscriptstyle 6} = k_n H_{max} = 33,39$$

 k_n – коэффициент вероятной высоты подъема, равный – 0,7;

 H_{max} — максимальная высота подъема лифта до наивысшего обслуживаемого этажа — 47.7:

h – путь, который проходит лифт при разгоне до номинальной скорости и торможении от номинальной скорости до остановки, м – 3,5;

V – скорость лифта – 1,6 м/с;

 N_{g}^{n} , N_{g}^{c} - число вероятных остановок лифта при подъеме и спуске соответственно:

$$N_e^n = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^n E_1} = 2.956$$

$$N_e^c = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^c E_1} = 1.565$$

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

 N_1 – число обслуживаемых лифтом этажей в здании – 14;

 k_t — коэффициент, учитывающий дополнительные затраты времени при работе лифта – 1,05;

 t_1 - затраты времени на ускорение и замедление лифта, с;

 t_2 - затраты времени на пуск лифта пассажиром, с;

 t_3 - затраты времени на открывание и закрывание дверей, с;

Принимаем значение $t_1 + t_2 + t_3 = 10c$

 t_4^n, t_4^c - затраты времени на вход пассажиров в кабину лифта при подъеме и спуске соответственно, с;

 t_5^n, t_5^c - затраты времени на выход пассажиров из кабины лифта при подъеме и спуске соответственно, с;

Время на вход и выход пассажиров при подъеме вычисляют по формуле:

$$t_4^n + t_5^n = 2\Delta t \gamma^n E_1 = 5.12$$

Время на вход и выход пассажиров при спуске вычисляют по формуле:

$$t_4^c + t_5^c = 2\Delta t \gamma^c E_1 = 2.56$$

 Δt — число обслуживаемых лифтом этажей в здании, при ширине дверного приема более $1000 \ \text{мм} - 0.8c$;

Рассчитаем провозную способность пассажирского лифта №3($P_{\pi 3}$).

Расчетный пятиминутный пассажиропоток при равномерной заселенности этажей A_3 , чел./5 мин

$$A_3 = A \frac{(N - N_H)i}{100 * N} = 15.44$$

где: А – жильцы всего здания – 163;

N — число заселенных этажей — 14;

 N_{H^-} число этажей, жильцы которого не пользуются лифтами - 0;

i - показатель интенсивности пассажиропотока – 8%.

Расчетный часовой пассажиропоток A_{3p} , чел.-ч

$$A_{3n} = 12A_3 = 156.48$$

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

19 _	02 –	01(K1) -	- ИОС5.7.2.ПЗ
1) –	U 2 —	OI(IXI)	- HOC3.7.2.113

$$P_{\pi 3} = \frac{3600E(\gamma^n + \gamma^c)}{T}$$

где: E — номинальная вместимость лифта;

 γ^n – коэффициент заполнения кабины лифта при подъеме – 0,8;

 γ^{c} – коэффициент заполнения кабины лифта при спуске – 0,4;

Т - Время кругового рейса лифта при двухстороннем пассажиропотоке.

Рассчитаем провозную способность пассажирского лифта $Neg 3(P_{\pi 3})$.

$$P_{n3} = \frac{3600E_3(\gamma^n + \gamma^c)}{T_1} = 267.999$$

где: E_3 – номинальная вместимость лифта –10 чел;

 T_3 - время кругового рейса лифта при двухстороннем пассажиропотоке рассчитывается по формуле:

$$T_3 = \frac{2H_e - h(N_e^n + N_e^c + 1)}{V} + k_t[(t_1 + t_2 + t_3)(N_e^n + N_e^c + 1) + t_4^n + t_4^c + t_5^n + t_5^c] = 161.195$$

где: H_{e} – вероятная высота подъема лифта, м:

$$H_e = k_n H_{max} = 39.06$$

 k_n – коэффициент вероятной высоты подъема, равный – 0,7;

 H_{max} — максимальная высота подъема лифта до наивысшего обслуживаемого этажа — 55,8;

h – путь, который проходит лифт при разгоне до номинальной скорости и торможении от номинальной скорости до остановки, м – 3,5;

V – скорость лифта – 1,6 м/с;

 $N_{\scriptscriptstyle g}^n$, $N_{\scriptscriptstyle g}^c$ - число вероятных остановок лифта при подъеме и спуске соответственно:

$$N_e^n = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^n E_1} = 6.45$$

$$N_e^c = N_1 - N_1 \left(\frac{N_1 - 1}{N_1}\right)^{\gamma^c E_1} = 3.64$$

 N_1 – число обслуживаемых лифтом этажей в здании – 16;

Изм.	Кол.	Лист	Nдок	Подп.	Дата

Взам.инв.№

Подпись и дата

Инв.№ подл.

 k_t – коэффициент, учитывающий дополнительные затраты времени при работе лифта – 1,05;

 t_1 - затраты времени на ускорение и замедление лифта, с;

 t_2 - затраты времени на пуск лифта пассажиром, с;

 t_3 - затраты времени на открывание и закрывание дверей, с;

Принимаем значение $t_1 + t_2 + t_3 = 10 c$

 t_4^n, t_4^c - затраты времени на вход пассажиров в кабину лифта при подъеме и спуске соответственно, с;

 t_5^n, t_5^c - затраты времени на выход пассажиров из кабины лифта при подъеме и спуске соответственно, с;

Время на вход и выход пассажиров при подъеме вычисляют по формуле:

$$t_4^n + t_5^n = 2\Delta t \gamma^n E_1 = 12.8$$

Время на вход и выход пассажиров при спуске вычисляют по формуле:

$$t_4^c + t_5^c = 2\Delta t \gamma^c E_1 = 6.4$$

 Δt — число обслуживаемых лифтом этажей в здании, при ширине дверного приема более 1000 мм — 0,8c;

 K_p — коэффициент использования провозной способности группы лифтов жилого корпуса №3:

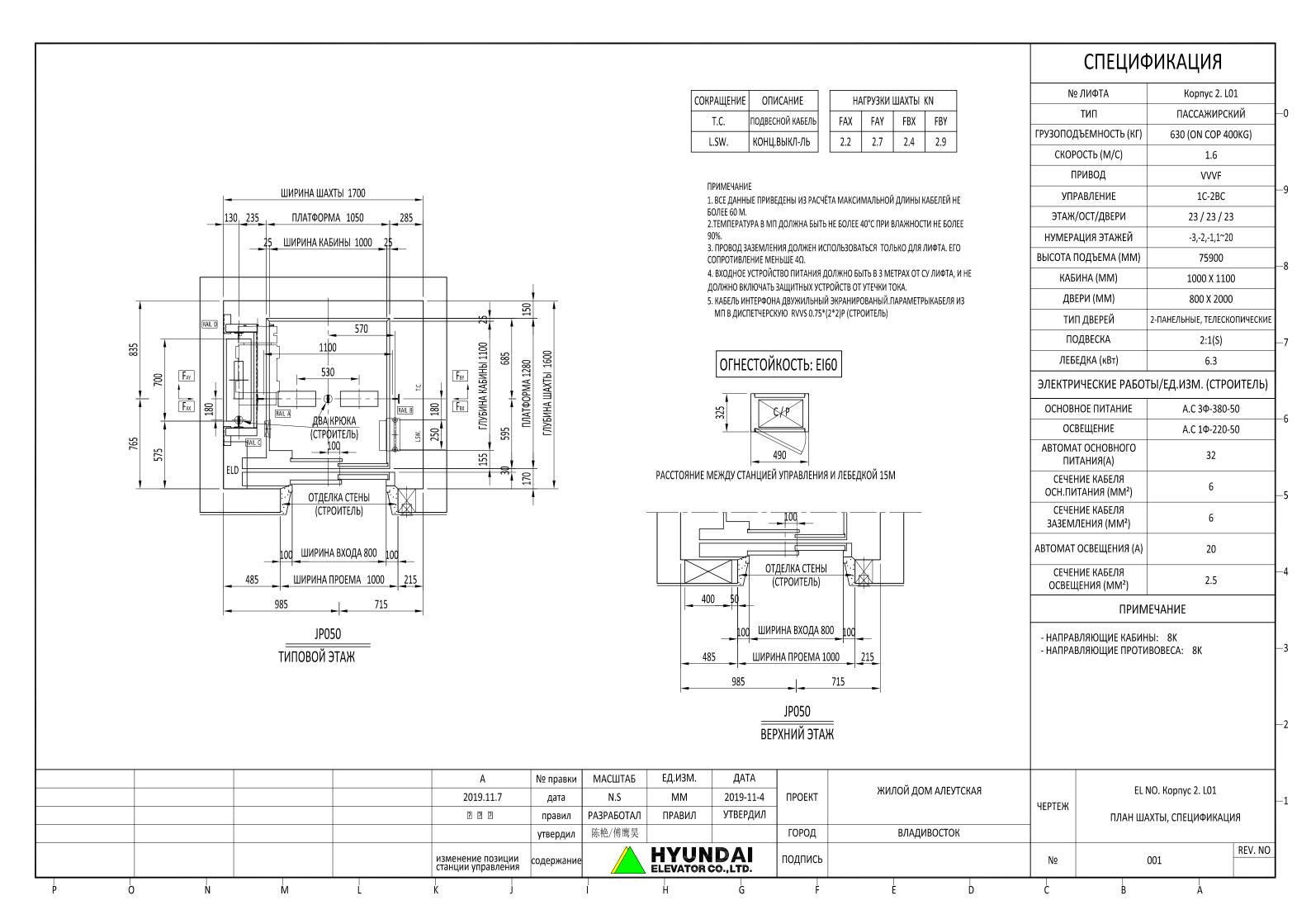
$$K_p = \frac{A_{1p}}{P_{n1} + P_{n2} + P_{n3}} = 0.25$$

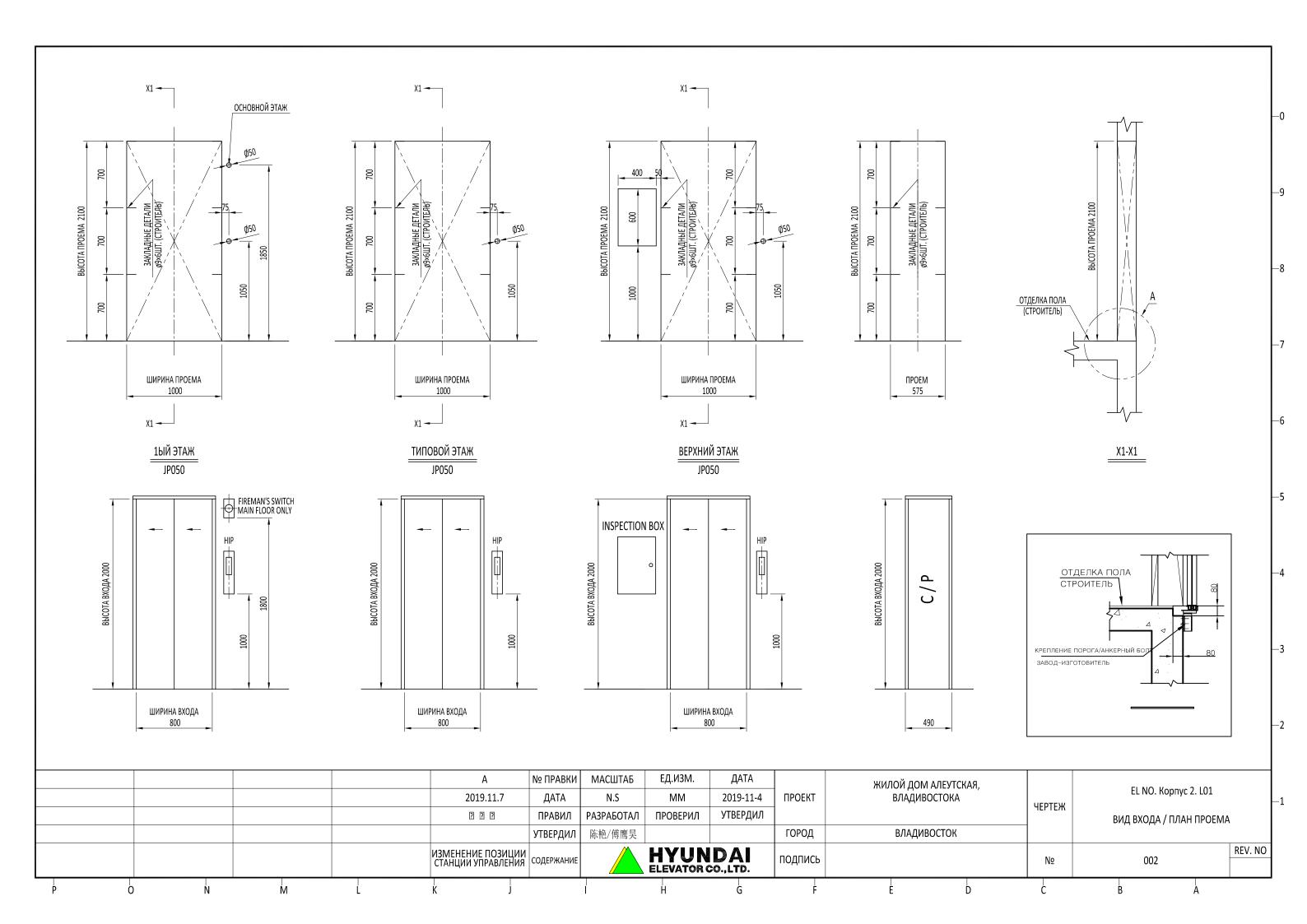
 t_u - интервал движения группы лифтов №1, лифты с различными параметрами:

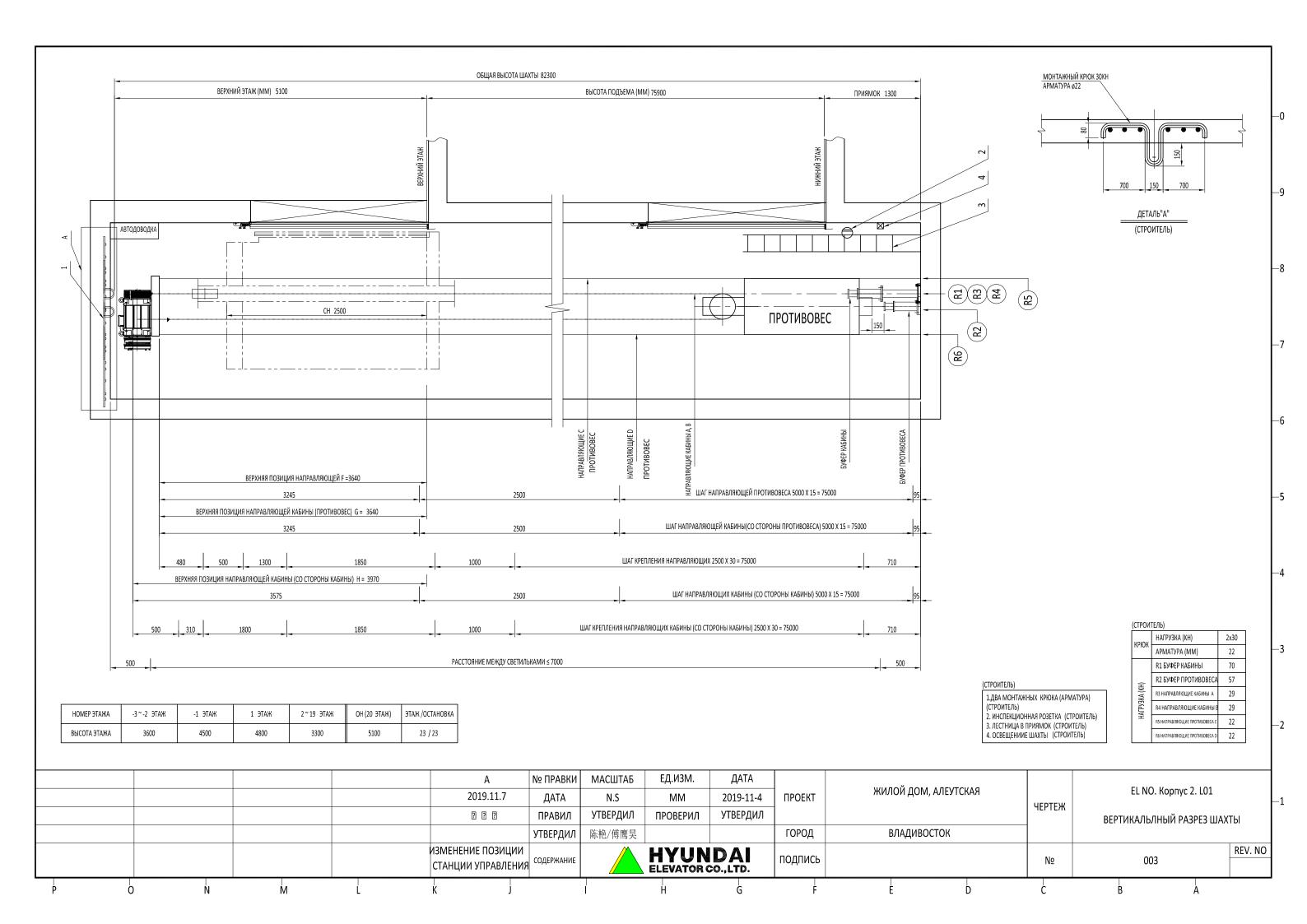
$$t_u = \frac{T_1 + T_2 + T_3}{n^2} = 39.995$$

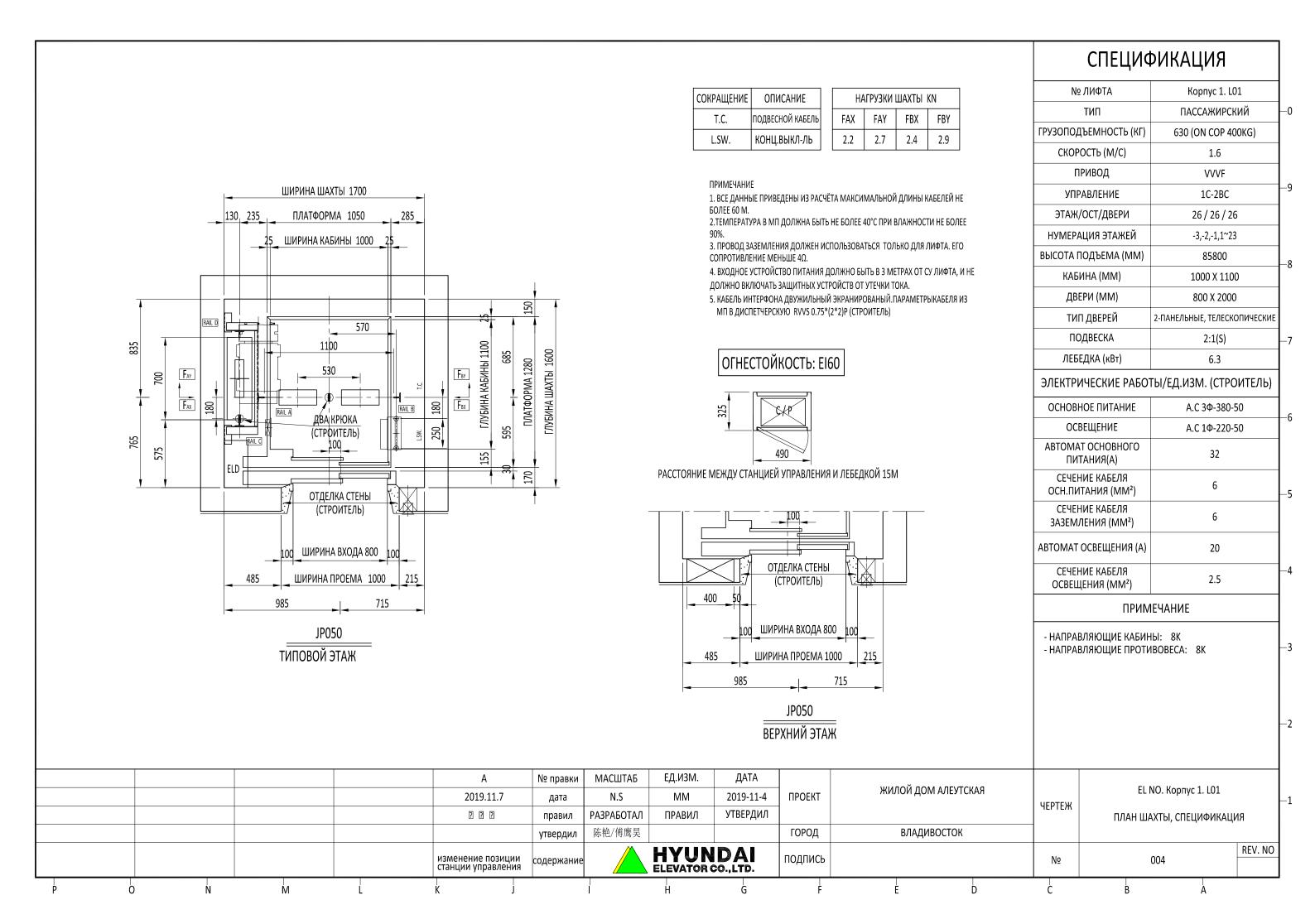
Согласно данному расчету используемых типов лифтов и их количества достаточно для обеспечения пиковых периодов использования лифтов. Уровень транспортной комфортности – отличный.

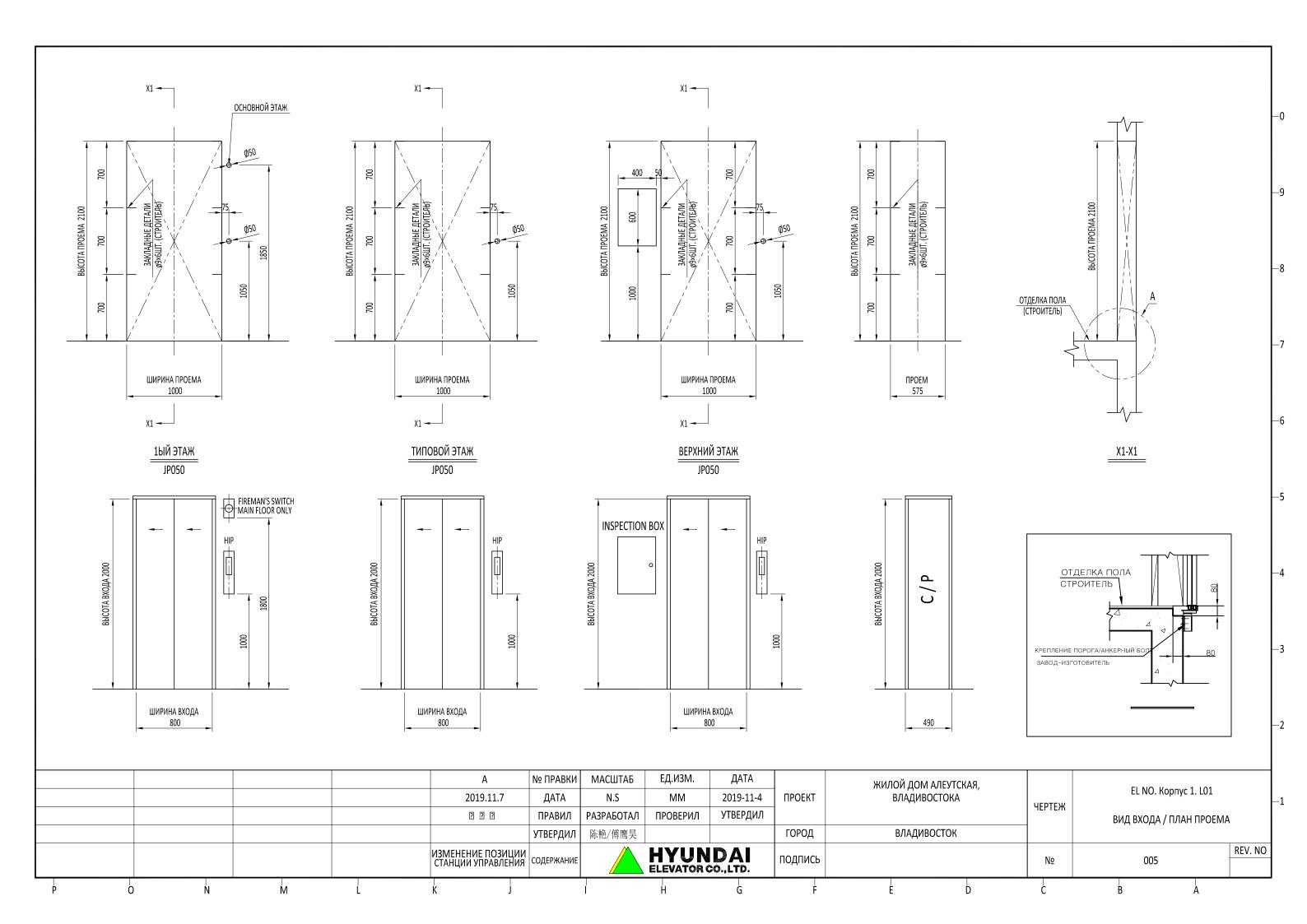
B3			
Подпись и дата			
[нв.№ подл.			
Nº 1			
HE			


Кол. Лист Идок


19 –	02 –	01 <i>(</i> K1) – ИОС5.7.2.1	Т3
1	U	OTITE	, 11003.7.2.1	


УСТАНОВОЧНЫЙ ЧЕРТЕЖ ПО ПРОЕКТУ ЖИЛОЙ ДОМ, АЛЕУТСКАЯ




ЧЕРТЕЖ	2019-11- 6
ЧЕРТЕЖ	2019-11-4

