

398036, г. Липецк, ул. Катукова, д. 19 тел./факс: +7 (4742) 37-94-49,

+7 (4742) 52-77-44

e-mail: vertikal4806@mail.ru

www.vertikal-lipetsk.ru

Заказчик: ООО ПИ «Гипрокоммундортранс» № заказа: 86-05-2018

Технический отчет

по инженерно-геологическим изысканиям на объекте:

«Многоквартирный многоэтажный жилой дом со встроеннопристроенными нежилыми помещениями поз.4 по ул. Московской, 155 в г. Липецке. II этап»

Проектная и рабочая документация

398036, г. Липецк, ул. Катукова, д. 19 тел./факс: +7 (4742) 37-94-49,

+7 (4742) 52-77-44

e-mail: vertikal4806@mail.ru

№ заказа: 86-05-2018

www.vertikal-lipetsk.ru

Заказчик: ООО ПИ «Гипрокоммундортранс»

Технический отчет

по инженерно-геологическим изысканиям на объекте:

«Многоквартирный многоэтажный жилой дом со встроеннопристроенными нежилыми помещениями поз.4 по ул. Московской, 155 в г. Липецке. II этап»

Проектная и рабочая документация

Генеральный директор

Технический директор

О.О. Дудин

А.Н. Ливенцев

СОДЕРЖАНИЕ

Обозначение	Наименование	Стр.
86-05-2018-ИГИ-П3-1.1	Введение	5
86-05-2018-ИГИ-ПЗ-1.2	Изученность инженерно-геологических условий	9
86-05-2018-ИГИ-ПЗ-1.3	Физико-географические и техногенные условия участка изысканий	10
86-05-2018-ИГИ-ПЗ-1.4	Геологическое строение и свойства грунтов	13
86-05-2018-ИГИ-ПЗ-1.5	Сводная таблица нормативных и расчетных значений физико-механических свойств грунтов	16
86-05-2018-ИГИ-П3-1.6	Гидрогеологические условия участка	17
86-05-2018-ИГИ-П3-1.7	Специфические грунты	18
86-05-2018-ИГИ-ПЗ-1.8	Геологические и инженерно-геологические процессы	19
86-05-2018-ИГИ-П3-1.9	Заключение	20
86-05-2018-ИГИ-ПЗ-1.10	Список использованных материалов	23
	Текстовые приложения	
86-05-2018-ИГИ-2.1	Техническое задание	25
86-05-2018-ИГИ-2.2	Выписка из реестра членов саморегулируемой организации	27
86-05-2018-ИГИ-2.3	Заключение о состоянии измерений в лаборатории	29
86-05-2018-ИГИ-2.4	Программа на производство инженерногеологических изысканий	32
86-05-2018-ИГИ-2.5	Заявление-регистрация инженерно-геологических изысканий	34

Изм	Кол уч	Лист	№ док	Подп	Дата	86-05-2018-ИГ						
Геолог		Лукья		4 7	05.18		Стадия	Лист	Листов			
Нач.отдела		Лукьянова			05.18	СОДЕРЖАНИЕ	ПР ОО(о «Верті	икаль»			

Обозначение	Наименование	Стр.
86-05-2018-ИГИ-2.6	Ведомость результатов анализа гранулометрического состава и физических свойств грунтов	35
86-05-2018-ИГИ-2.7	Ведомость механических свойств грунтов	40
86-05-2018-ИГИ-2.8	Ведомость результатов статистической обработки частных значений физикомеханических характеристик грунтов	45
86-05-2018-ИГИ-2.9	Результаты испытания грунтов методом компрессионного сжатия	51
86-05-2018-ИГИ-2.10	Результаты испытания грунтов методом одноплоскостного среза	70
86-05-2018-ИГИ-2.11	Ведомость химического анализа грунтов	89
86-05-2018-ИГИ-2.12	Ведомость химического анализа воды	105
86-05-2018-ИГИ-2.13	Ведомости лабораторного и полевого определения коррозионной агрессивности грунтов по отношению к стальным подземным сооружениям	109
86-05-2018-ИГИ-2.14	Результаты статического зондирования	110
86-05-2018-ИГИ-2.15	Ведомость определения наличия блуждающих токов	141
86-05-2018-ИГИ-2.16	Каталог координат и высот выработок	142
	Графические приложения	
86-05-2018-ИГИ-3.1	Карта фактического материала	143
86-05-2018-ИГИ-3.2	Условные обозначения	144
86-05-2018-ИГИ-3.3	Инженерно-геологические разрезы	145
86-05-2018-ИГИ-3.4	Литологические колонки скважин	150-15

86-05-2018-

1.1 Введение

Согласно техническому заданию ООО ПИ «Гипрокоммундортранс» (договор №2392-III-4-ИЗ-СП1 от 11.05.2018г.) проектом предусматривается строительство на объекте: «Многоквартирный многоэтажный жилой дом со встроенно-пристроенными нежилыми помещениями поз.4 по ул. Московской, 155 в г. Липецке. II этап».

Уровень ответственности сооружений - II-нормальный.

Стадия проектирования - ПР (проектная и рабочая документация).

Требования к инженерно-геологическому отчету, основные характеристики проектируемых сооружений приведены в техническом задании.

В административном отношении участок работ находится в г. Липецк по ул. Московская, 155.

В мае 2018г. на участке проектируемого строительства отделом геологии ООО «Вертикаль» проведены инженерно-геологические изыскания.

Параллельно с данным объектом проводились работы по заказу №84-05-2018 на объекте: «Многоквартирный многоэтажный жилой дом со встроеннопристроенными нежилыми помещениями поз.2 по ул. Московской, 155 в г. Липецке. II этап» и по заказу №85-05-2018 на объекте: «Многоквартирный многоэтажный жилой дом со встроенно-пристроенными нежилыми помещениями поз.3 по ул. Московской, 155 в г. Липецке. II этап».

Право на проведение инженерно-геологических изысканий удостоверяет выписка из реестра членов саморегулируемой организации от 07.05.2018 №ЛИ-773/18.

Целью инженерно-геологических изысканий являлось изучение:

- а) геолого-литологического строения;
- б) гидрогеологических условий;
- в) распространения, характера и интенсивности проявления физико-

			86-05-20181.1-1.10)	
	H	05.18 05.18		1	20
	GF.			«	»

геологических процессов и явлений, отрицательно влияющих на строительство и эксплуатацию проектируемых сооружений;

г) физико-механических, коррозионных свойств грунтов.

Для этого были выполнены буровые, геофизические и лабораторные работы согласно заданию на производство работ, виды и объемы работ представлены в таблице N^21 .

Таблица 1- Виды и объемы работ

Наименование видов работ	Единицы измерения	Объемы работ					
ПОЛЕВЫЕ РАБОТЫ							
Механическое бурение скважины диаметром 135 мм скв./м							
Статическое зондирование	точка	2					
Отбор монолитов и проб из скважин	монолит+проба	63					
Определение УЭС /наличия блуждающих токов	анализ	3/1					
ЛАБОРАТОРНЫЕ РАБОТЫ							
Комплекс физических испытаний грунтов	анализ	52					
Комплекс физико-механических испытаний грунтов	анализ	11					
Гранулометрический анализ методом ареометра	анализ	6					
Гранулометрический анализ песка	анализ	38					
Химический анализ водных вытяжек грунтов/воды	анализ	12/1					
Определение УЭС и средней плотности катодного тока	анализ	3					
КАМЕРАЛЬНЫЕ РАБОТЫ – обработка данных бурения, геофизических работ, лабораторных исследований грунтов, составление технического отчета							

Полевые буровые работы выполнены бригадой буровой установки ПБУ – 2.02 Белоглазова С.В. под руководством инженера-геолога Лукьяновой М.А.

Местоположение скважин согласовано с заказчиком и показано на карте фактического материала (прил. 3.1). По окончании бурения проводился тампонаж скважины согласно "Инструкции по тампонажу разведочных и стационарных скважин, пробуренных в процессе инженерно-геологических изысканий для строительства", ВСН-162-69.

В 2,0м от скважин №№14,16 были проведены полевые испытания грунтов методом статического зондирования при помощи установки «Пика 17», с использованием аппаратуры, разработанной НИИОСП им. Герсеванова Н.М., регистрирующей результаты статического зондирования в условиях природного залегания грунтов, со снятием показаний через 0,1м., при скорости погружения зонда 1,0м в минуту.

Лабораторные испытания грунтов выполнены в комплексной испытательной лаборатории ООО «Вертикаль» согласно действующим ГОСТам (раздел 1.10). Все расчеты произведены в соответствии с ГОСТ 20522-2012 «Грунты. Методы статистической обработки результатов испытаний». Результаты лабораторных исследований обработаны на ПК JBM/AT по программе " EnqGeo" и приведены в таблицах приложений (прил. 2.6-2.13).

Геофизические работы. Для определения коррозионной агрессивности грунтов были выполнены электроразведочные работы в полевых условиях - измерение удельного электрического (кажущегося) сопротивления грунтов.

Коррозионная агрессивность грунтов по отношению к углеродистой стали, подземным металлическим сооружениям оценивалась по величине удельного электрического сопротивления. Измерение удельного электрического сопротивления производились прибором Ф 4103-М1 с использованием четырех электродной установки AMNB, где AB – питающая линия, а MN - приемная линия. Расстояние между электродами A, M, N, B принималось одинаковое.

Всего произведено 3 измерения в 3 точках у скважин №№11,14,15 (*прил.3.1*) - грунты на участке обладают высокой степенью коррозионной агрессивности по отношению к углеродистой и низколегированной стали. Глубина определения коррозионной агрессивности грунта составляет 1,5м.

Так же коррозионная агрессивность грунтов определялась лабораторным способом на приборе «АКАГ» с целью определения удельного электрического сопротивления (УЭС) грунтов и средней плотности катодного тока. Данные измерений УЭС и средней плотности катодного тока приведены в ведомости (npun.2.13), из которой следует, что грунты также обладают высокой степенью коррозионной агрессивности по отношению к углеродистой стали.

Определение наличия блуждающих токов в земле на участке проектируемого строительства определено в одной точке у скв. $N^{\circ}13$ (npun.3.1) по методике «земля-земля» прибором 9B-2234 по двум взаимно перпендикулярным направлениям при разносе неполяризующихся электродов сравнения.

Поле блуждающих токов в районе исследованной площадки имеет различную полярность, амплитуды колебаний потенциала, измеряемого в

указанных точках, приведены в ведомости (*прил.2.15*). Блуждающие токи на участке проектируемого строительства отсутствуют, имеет место наличие токов в земле лишь естественного происхождения небольшой интенсивности.

Камеральная обработка материалов выполнена Лукьяновой М.А. в соответствии с ГОСТ 21.302-2013 и ГОСТ Р 21.1101-2013.

Технический отчет составлен на основании полевых буровых и геофизических работ, лабораторных, камеральных и нормативных материалов со всеми необходимыми текстовыми и графическими приложениями.

Номенклатура грунтов дана в соответствии с ГОСТ 25100-2011.

Материалы инженерно-геологических изысканий выпускаются, согласно требованиям технического задания, на бумажных носителях в четырёх экземплярах, в электронном виде на CD диске – в 1 экземпляре, которые передаются Заказчику.

Настоящий отчёт не подлежит размножению или передаче другим организациям и лицам без письменного разрешения ООО «Вертикаль».

1.2 Изученность инженерно-геологических условий

При изучении инженерно-геологических условий участка проектируемого строительства и при составлении технического отчета использовалась опубликованная геологическая литература по региону:

1. Анализ современного состояния и степени изученности минеральносырьевой базы Липецкой области и прогнозирование новых месторождений в связи с перспективами вовлечения их в разработку, ОАО «Липецкгеология, 2006г.

1.3 Физико-географические и техногенные условия участка изысканий

3.1. Местоположение объекта, рельеф местности, техногенные нагрузки

В административном отношении участок работ находится в г. Липецк по ул. Московская, 155.

Территория под проектируемое строительство представляет собой относительно ровную с небольшими перепадами высот поверхность.

Абсолютные отметки площадки по устьям скважин находятся в пределах 156,33м (скв. $N^{\circ}16$) - 158,20м (скв. $N^{\circ}11$).

В геоморфологическом отношении участок отнесён к междуречному Воронежско-Донскому геоморфологическому району и приурочен к водно-ледниковой возвышенной полого холмистой эрозионной равнине донского возраста.

Орографически район относится к восточным отрогам Средне-Русской возвышенности и представляет собой эрозионную равнину, изменённую процессами денудации.

Растительность, представленная на участке проектируемого строительства, присуща лесостепной и степной зонам центрального Черноземья.

Речная сеть района относится к бассейну реки Воронеж, реки имеют преимущественно снеговое питание и полноводны лишь во время весеннего паводка. Затоплению паводковыми водами участок не подвержен.

3.2. Климатические условия

Климат территории относится ко II климатическому району. Среднегодовое количество осадков составляет 567 мм, из них 367 мм (65%) выпадает в теплое время года (апрель-октябрь).

Продолжительность периода с температурами выше 0°C составляет 229 дней (теплый период - апрель-октябрь), при средней температуре плюс 13,4° С.

Продолжительность периода с отрицательными температурами ниже 0°C (зимний период) насчитывает 136 дней, при средней температуре минус 5,7°C.

По данным наблюдения АМСГ Липецк характеризуется следующими показателями:

- среднегодовая температура воздуха плюс 5,5° С;
- абсолютный минимум температуры воздуха минус 38,4°C (период осреднения 1909г-2013г) отмечался в феврале 1929г.
 - абсолютный максимум температуры воздуха плюс 40,7°C (период осреднения 1909г-2013г) отмечался в августе 2010г.
 - средняя температура воздуха наиболее жаркого месяца (июль) плюс 19.2° С (1961г-1990г);
 - средняя температура наиболее холодного месяца (январь) минус 9.5° С (1961г-1990г);
 - средняя годовая относительная влажность воздуха 76%;
 - снеговой район (СНиП 2.01.07-85 карта №1 приложение №5)-III;
 - ветровой район (СНиП 2.01.07-85 карта №3 приложение №5) II;
 - гололедный район (СНиП 2.01.07-85) III;
 - строительно-климатическая зона IIB;
 - нормативная глубина сезонного промерзания грунтов рассчитана по формуле $d_{fn} = d_{0\sqrt{M_*}}$ с учетом данных СП 131.13330.2012 (актуализированная редакция СНиП 23-01-99*) «Строительная климатология» и составляет: для суглинков 1,32 м; для песков мелких, пылеватых и супесей 1,60м; для песков средней крупности 1,72м;
 - дорожно-климатическая зона III.

Среднемесячная и годовая температура воздуха, (°С) (средняя многолетняя норма) (СП 131.13330.2012) [6].

I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	год
-10,3	-9,5	-4,4	5,5	13,8	18,0	20,2	18,5	12,5	5,5	-1,5	-7,1	5,1

-средняя из минимальных температур воздуха самого холодного месяца - января:

(период осреднения 1961-1990гг) по АМСГ Липецк – минус 12,8° С; (период осреднения 1991-2010гг) по АМСГ Липецк – минус 10,2° С;

- средняя из максимальных температур воздуха самого теплого месяца - июля:

(период осреднения 1961-1990гг) по АМСГ Липецк – плюс 24,8°С; (период осреднения 1991-2010гг) по АМСГ Липецк – плюс 26,3° С.

86-05-20181	.1-1	l.1	0
-------------	------	-----	---

Сумма осадков (мм) по декадам и месяцам

(период осреднения 1980-2009гг - средняя многолетняя норма) метеостанция

АМСГ Липецк

I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	год
35	29	25	33	46	67	71	50	50	51	42	35	534

Высота снежного покрова по декадам (см), АМСГ Липецк

IX		X			XI			XI	I		I		
3	1	2	3	1	2	3	1	2	3	1	2	3	
					1	4	6	11	16	21	26	30	
	II						IV			наибол	наибольшая за зиму		
1	2	3	1	2	3	5	1	2	3	сред	макс	МИН	
32	37	40	38	38	3 1.	5				17	99	11	

Средняя месячная и годовая абсолютная влажность воздуха (Мб), АМСГ Липецк

I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	год
2,0	2,9	3,8	6,7	9,4	12,8	15,1	14,4	10,4	7,0	4,8	3,6	7,8

Средняя месячная и годовая относительная влажность воздуха (%),АМСГ Липецк

I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	год
85	83	84	74	63	62	66	70	73	81	85	87	76

Среднегодовая роза ветров, повторяемость направлений (%) и штилей (по 8 румбам), период осреднения 1985-2013гг.), АМСГ Липецк

\	F)	//	HF	,				
С	CB	В	ЮВ	Ю	Ю3	3	C3	ШТИЛЬ
11	9	10	10	16	13	20	11	2

В Липецком районе в течение года преобладают ветры западного направления. В последние

годы (1985-2013г) в зимнее время прослеживается преобладание ветров югозападной четверти.

Скорость ветра по направлениям (м/сек), (период осреднения 1985-2013гг.), АМСГ Липецк

ſ	C	CB	B	ЮВ	Ю	ЮЗ	3	C3
ŀ	- 4.0	CD	- D	101	10	100	4.0	4.0
	4,0	3,5	3,8	4,5	4,5	4,6	4,2	4,2

Данные по климатическим условиям участка, предоставлены ГУ «Липецким областным центром по гидрометеорологии и мониторингу окружающей среды».

1.4 Геологическое строение и свойства грунтов

В геологическом строении участка изысканий до глубины 25,0м принимают участие отложения четвертичной (Q) и меловой (K) системы.

Современные отложения (О_{IV}).

Техногенные образования (tIV) - насыпной грунт.

Нижнечетвертичные отложения (О1).

Донской горизонт. Ледниковые отложения основной морены $(g^0 Idns)$ представлены суглинками твёрдыми и полутвёрдыми.

В геолого-литологическом разрезе участка с учетом генезиса, стратиграфии, физико-механических свойств грунтов и их номенклатурного наименования до глубины 25,0 м выделено 5 инженерно-геологических элементов (ИГЭ).

Геолого-литологический разрез имеет следующий вид (сверху - вниз):

Четвертичная система - Q

Современные отложения - ОІV

Tехногенные образования – tIV

ИГЭ№1 Насыпной грунт - смесь почвы, суглинка, щебня, песка, с поверхности асфальтобетон. Давность отсыпки более 3 лет. Вскрыт всеми скважинами, мощностью 0,6-3,2 м.

Выделен как неотъемлемая составляющая литологическая разность, но не как элемент, способный быть основанием для проектируемого сооружения. На основании этого элемент не изучался и в сводной таблице плотность приводится по данным региона 1,72г/см³.

<u>Нижнечетвертичные отложения (Q_I).</u>

Донской горизонт. Ледниковые отложения основной морены $(g^0 Idns)$

ИГЭ №3 Суглинок твердый, лёгкий, коричневый, серо-коричневый, бурый, незасоленный, песчанистый, с частыми прослоями и линзами песка ожелезнённого, с включениями гальки и гравия осадочных и кристаллических пород. Отложения вскрыты всеми скважинами мощностью 1,3 - 5,8м.

86-05-2018-	1	1-1	1	1 (١
あローロコー / ロエカー	 н.	1 -	Ι.	ı	,

Средние значения:

Влажность природная, % (W) - 14,20

Плотность грунта прир. сложения, г/см³ - 2,01

Число пластичности – 10,19

Показатель текучести - минус 0,06

ИГЭ № Суглинок полутвердый, тяжёлый, серый, незасоленный, с частыми прослоями и линзами песка ожелезнённого, с включениями гальки и гравия осадочных и кристаллических пород. Отложения вскрыты всеми скважинами мощностью 2,3-3,5 м.

Средние значения:

Влажность природная, % (W) - 17,45

Плотность грунта прир. сложения, г/см³ - 2,02

Число пластичности – 14,67

Показатель текучести -0,06

Нижнемеловые отложения (K_I)

ИГЭ №5 Песок средней крупности, плотный, малой степени водонасыщения, коричневый, серый, серо-коричневый, серо-жёлтый, неоднородный, с частыми прослоями суглинка, местами ожелезнённый, незасоленный. Отложения вскрыты всеми скважинами мощностью 3,10-4,40м.

Средние значения:

Влажность природная, % (W) - 9,38

Плотность грунта прир. сложения, г/см 3 (р) – 1,91

Коэффициент пористости - 0,52

ИГЭ №7 Песок мелкий, плотный, малой степени водонасыщения, серо-белый, белый, серо-рыжий, жёлто-оранжевый, с частыми прослойками суглинка, местами ожелезнённый, незасоленный. Отложения вскрыты всеми скважинами, вскрытой мощностью 11,70-14,00м.

Средние значения:

Влажность природная, % (W) - 8,20

Плотность грунта г	трир. сложения, г/см 3 (р) $-$ 1,88	
Коэффициент пори	стости – 0,53	
	06.05.2010	
	86-05-20181.1-1.10	10

Условия залегания литолого-генетических разновидностей грунтов представлены на инженерно-геологических разрезах *(приложение 3.3)*.

Послойное описание инженерно-геологических элементов приведено на литологических колонках скважин (приложение 3.4).

Грунты по ГОСТ 25100-2011 и СП 34.13330.2012 - незасоленные.

По степени агрессивности все грунты неагрессивные ко всем маркам бетона на портландцементе, шлакопортландцементе и сульфатостойких цементах, а так же к железобетонным конструкциям.

Степень агрессивного воздействия всех грунтов на свинцовую и алюминиевую оболочку кабеля средняя и высокая соответственно.

Физико-механические характеристики грунтов определены лабораторными испытаниями, по данным СП 22.13330.2011 и приведены в сводной таблице текстовой части (нормативных и расчетных значений).

86-05-2018- - -1.1-1.10

Расчетные Нормативные характеристики характеристики по лабораторным данным по данным при доверительной СП 22.13330.2011 статического вероятности (Мпа) в нагрузлотность сухого дисперсного грунта $({
m r/cm}^3)$ в ест.состоянии СП 22.13330.2011 в числителе 0,95 зондирования при водонасыщении (ест. состояние) в знаменателе 0,85 начальное просадочное давление (МПа) тажность на границе раскатывания (%) относит. просадочность от внешней ки P=0,1МПа, P=0,2МПа гол внутреннего трения (градус) деформации (МПа)с **mk** Номенклатурное наименование при Коэффициент (К) согласно п.5.6.7 грунтов гоянии (числитель) и (по ГОСТ 25100-2011) оэффициент пористости исло пластичности (%) и краткое их описание № группы грунтов (ГЭСН-2001, выпу дельное (юдуль $\mathbf{C}_{\mathbf{I}}$ W W_{L} C_n \mathbf{E} C_n $\mathbf{W}_{\mathbf{p}}$ $\mathbf{J}_{\mathbf{p}}$ S_r C_n \mathbf{E} \mathbf{J}_{L} $\mathbf{E}_{\mathbf{m}}$ Ro Rc \mathbf{e} $\mathbf{p_n}$ \mathbf{p}_{dn} C_{II} п 1,72 Насыпной грунт - смесь почвы, суглинка, 1,72 п.9в щебня, песка, с поверхности асфальтобетон 1,72 Песок средней крупности, средней плотности, 1,87 1,0 27,9 от средней степени водонасыщения до водо-13,59 0,60 0,60 1,88 1,66 30,7 18,0 1,5 36,5 35,0 п.29а 1.1 насыщенного, коричневый, неоднородный, 1,88 1,5 30,7 незасоленный Суглинок твердый, лёгкий, коричневый, серо-25,4 2,01 34,28 20,79 коричневый, бурый, незасоленный, песчани-14,20 25,05 14,86 10,19 -0,06 0,54 0,72 24,5 26,4 1.0 стый, с частыми прослоями и линзами песка 2,01 1,76 34,0 38,0 25,1 41,0 п.35в ожелезнённого, с включениями гальки и гра-20,99 35,78 21,26 23,2 2,01 34,92 вия осадочных и кристаллических пород Суглинок полутвердый, тяжёлый, серый, неза-20,98 22,6 2,02 26,16 соленный, с частыми прослоями и линзами 17,45 31,18 16,51 14,67 0,06 0,58 0,82 2,02 1,72 31,0 23,5 22,8 35,2 24,7 40,0 п.35в 1.0 песка ожелезнённого, с включениями гальки и 30,22 21,55 20,2 2,02 27,88 21,22 гравия осадочных и кристаллических пород Песок средней крупности, плотный, от малой 1,89 1,5 33,3 до средней степени водонасыщения, коричне-60,0 вый, серый, серо-коричневый, серо-жёлтый, 9,38 0,52 0,48 1,91 1,75 36,6 2,3 38,6 43,0 --п.29а 1.1 неоднородный, с частыми прослоями суглин-1,90 2,3 36,6 ка, местами ожелезнённый, незасоленный Суглинок полутвердый, тяжёлый, красно-2,08 36,69 21,28 16,92 31,16 16,08 15,08 0,06 0,53 0,87 2,08 1,78 38,0 25,4 31,1 п.35в 1.0 коричневый, серо-жёлтый, серый, с частыми 24,7 37,71 21,45 39,11 21,68 2,08 прослойками и линзами песка Песок мелкий, плотный, малой степени водо-1,87 2,9 34,4 насыщения, серо-белый, белый, серо-рыжий, 8,20 0,53 40,0 1.1 жёлто-оранжевый, с частыми прослойками 0,41 1,88 1,74 37,8 65,0 4,4 36,4 п.29а суглинка, местами ожелезнённый, незасолен-37,8 1,88 4,4 22.13330.2011. 3. 22.13330.2011 .5.3.15 86-05-2018-ИГИ-1.5 $(\sim 10,0)$ Лист № док Подп Дата Геолог 05.18 Лист Листов Лукьянова Стадия Сводная таблица нормативных и ПΡ 05.18 Нач.отдела Лукьянова расчетных значений физикомеханических характеристик грунтов ООО «Вертикаль»

Взам инв $N^{\!2}$

Инв ${
m N}^{
m e}$ 1

1.6 Гидрогеологические условия участка

В период проведения изысканий (май 2017г.) на участке проектируемого строительства скважиной №15 вскрыты подземные воды типа «верховодка» на глубине 6,00 м от поверхности, с абсолютной отметкой 154,4 м.

Водовмещающими грунтами служат песчаные прослои в суглинках ИГЭ №4.

Подземные воды (см. ведомости химического анализа воды) неагрессивные ко всем маркам бетона на портландцементе, шлакопортландцементе и сульфатостойких цементах, не оказывают агрессивного воздействия на арматуру железобетонных конструкций при постоянном смачивании, слабоагрессивные на арматуру железобетонных конструкций при периодическом смачивании, среднеагрессивные к металлическим конструкциям при свободном доступе кислорода.

К оболочкам кабеля (свинцовая и алюминиевая) подземные воды обладают соответственно средней и высокой степенью агрессивности, по худшему варианту.

По химическому составу подземные воды – хлоридно-гидрокарбонатные натриево-кальциевые, кальциево-натриевые, пресные, очень жёсткие (жёсткость карбонатная), минерализация 0.6-0.8г/л, pH = 7.8-8.0.

86-05-2018-	1.1-1.10	

13

1.7 Специфические грунты

В пределах участка проектируемого строительства к специфическим грунтам относятся насыпные грунты ИГЭ $N^{\circ}1$.

Специфические особенности насыпных грунтов ИГЭ №1 заключаются в значительной неоднородности их по составу, неравномерной плотности и сжимаемости, возможности самоуплотнения от собственного веса грунтов, особенно в случаях действия вибраций от работающего оборудования, изменения гидрогеологических условий, замачивания насыпных грунтов, разложения органических включений, использовать грунты под основание фундаментов в естественном состоянии не рекомендуется.

Насыпной грунт ИГЭ №1 - смесь почвы, суглинка, щебня, песка, с поверхности асфальтобетон. Давность отсыпки более 3 лет. Вскрыт всеми скважинами, мощностью 0,6-3,2 м.

Выделен как неотъемлемая составляющая литологическая разность, но не как элемент, способный быть основанием для проектируемого сооружения. На основании этого элемент не изучался и в сводной таблице плотность приводится по данным региона 1,72г/см 3 .

Проектирование на специфических грунтах следует вести с учетом рекомендаций СП 22.13330.2011 и других нормативных документов.

				86-05-20181.1-1.10	
					14

1.8 Геологические и инженерно-геологические процессы

Современная деятельность физико-геологических процессов и явлений, способных отрицательно влиять на устойчивость проектируемых сооружений, связана с возможным появлением грунтовых вод типа «верховодка» в скважинах $N^{\circ}N^{\circ}11,12,13,14,16$, которая может выражаться в подтоплении фундаментов.

По критериям типизации территории по подтопляемости участок проектируемого строительства по наличию процесса подтопления, согласно приложения «И» СП 11-0105-97 часть II, относится к области II-A1, A2 - потенциально подтопляемые в результате длительных климатических изменений и экстремальных природных ситуаций.

Сейсмичность участка изысканий по картам ОСР-2016 «Общего сейсмического районирования территории Российской Федерации» (СП 14.13330.2014 приложение Б) составляет:

- для объектов нормальной (массовое строительство) и пониженной ответственности по карте «**A**» 5 баллов;
- для объектов повышенной ответственности (особо опасные, технически сложные или уникальные сооружения) по карте « \mathbf{B} » 5 баллов, по карте « \mathbf{C} » 6 баллов.

Расчетная сейсмическая интенсивность приведена в баллах шкалы MSK-64 для средних грунтовых условий.

1.9 Заключение

- 1 По сложности инженерно-геологических условий по совокупности данных участок изысканий отнесен к III категории сложности.
- 2 В геологическом строении участка проведения изысканий до глубины 25,0м принимают участие четвертичные и меловые отложения.
- 3 По результатам инженерно-геологических изысканий в геологолитологическом разрезе участка выделено 5 инженерно-геологических элементов (ИГЭ), их номенклатурное наименование и физико-механические характеристики приведены в текстовой части и приложениях.
- 4 В период проведения изысканий (май 2017г.) на участке проектируемого строительства скважиной №15 вскрыты подземные воды типа «верховодка» на глубине 6,00 м от поверхности, с абсолютной отметкой 154,4 м.

Водовмещающими грунтами служат песчаные прослои в суглинках ИГЭ №4.

Подземные воды (см. ведомости химического анализа воды) неагрессивные ко всем маркам бетона на портландцементе, шлакопортландцементе и сульфатостойких цементах, не оказывают агрессивного воздействия на арматуру железобетонных конструкций при постоянном смачивании, слабоагрессивные на арматуру железобетонных конструкций при периодическом смачивании, среднеагрессивные к металлическим конструкциям при свободном доступе кислорода.

К оболочкам кабеля (свинцовая и алюминиевая) подземные воды обладают соответственно средней и высокой степенью агрессивности, по худшему варианту.

По химическому составу подземные воды – хлоридно-гидрокарбонатные натриево-кальциевые, кальциево-натриевые, пресные, очень жёсткие (жёсткость карбонатная), минерализация 0.6-0.8г/л, рH = 7.8-8.0.

5 По критериям типизации территории по подтопляемости участок проектируемого строительства по наличию процесса подтопления, согласно приложения «И» СП 11-0105-97 часть II, относится к области II-A1, A2 - потенциально подтопляемые в результате длительных климатических изменений

86-05-2018- - -1.1-1.10

и экстремальных природных ситуаций.

6 По данным лабораторных и полевых исследований грунты на глубине 1,5м обладают высокой степенью коррозионной агрессивности по отношению к углеродистой и низколегированной стали.

Блуждающие токи на участке проектируемого строительства отсутствуют, имеет место наличие токов в земле лишь естественного происхождения небольшой интенсивности.

7 Грунты по ГОСТ 25100-2011 и СП 34.13330.2012 - незасоленные.

По степени агрессивности все грунты неагрессивные ко всем маркам бетона на портландцементе, шлакопортландцементе и сульфатостойких цементах, а так же к железобетонным конструкциям.

Степень агрессивного воздействия грунтов на свинцовую и алюминиевую оболочку кабеля средняя и высокая соответственно.

8 По степени морозной пучинистости при нахождении в зоне возможного промерзания:

-суглинки твёрдые ИГЭ №3 с параметром $_{\rm fn}$ = 1,4 % – слабопучинистые;

-суглинки полутвёрдые ИГЭ №4 с параметром $_{\rm fn}$ = 1,3 % – слабопучинистые.

Расчет морозного пучения глинистых грунтов проведен в соответствии с п.6.8.3 формула $N^{\circ}6.31$ СП 22.13330.2011.

9 Нормативная глубина сезонного промерзания грунтов рассчитана по формуле $d_{fn} = d_{0\sqrt{M_*}}$ с учетом данных СП 131.13330.2012 (актуализированная редакция СНиП 23-01-99*) «Строительная климатология» и составляет: для суглинков –1,32 м; для песков мелких, пылеватых и супесей – 1,60м; для песков средней крупности – 1,72м.

10 Снеговой район (СП 20.13330.2012 карта №1 приложение №5)–III; ветровой район (СП 20.13330.2012 карта №3 приложение №5) – II; гололедный район (СП 20.13330.2012) – III; строительно-климатическая зона – IIB.

11 Группа грунтов по трудности разработки определена согласно [6] и приведена в таблице текстовой части.

12 Современная деятельность физико-геологических процессов и явлений, способных отрицательно влиять на устойчивость проектируемых сооружений,

86-05-2018- - -1.1-1.10

связана с возможным появлением грунтовых вод типа «верховодка» в скважинах $N^{\circ}N^{\circ}11,12,13,14,16$, которая может выражаться в подтоплении фундаментов.

13 В пределах участка проектируемого строительства к специфическим грунтам относятся насыпные грунты ИГЭ $N^{\circ}1$.

Проектирование на специфических грунтах следует вести с учетом рекомендаций СП 22.13330.2011. и других нормативных документов.

14 Сейсмичность участка изысканий по картам ОСР-2016 «Общего сейсмического районирования территории Российской Федерации» (СП 14.13330.2011 приложение Б) составляет для объектов нормальной (массовое строительство) и пониженной ответственности, по карте «А» - 5 баллов.

Расчётная сейсмическая интенсивность приведена в баллах шкалы MSK-64 для средних грунтовых условий.

15 В случае несоответствия грунтов, вскрытых на отметках заложения фундамента, грунты должны быть осмотрены представителем ООО «Вертикаль» с составлением соответствующего акта.

18

1.10 Список использованных материалов

- 1. СП 47.13330.2012 «Инженерные изыскания для строительства. Основные положения».
- 2. СП 11-105-97 «Инженерно-геологические изыскания для строительства». Части І-V. Москва, 1997г.
- 3. СП 50-101-2004. «Проектирование и устройство оснований и фундаментов зданий и сооружений». Москва, 2005.
- 4. СП 22.13330.2011 актуализированная редакция СНиП 2.02.01-83* «Основания зданий и сооружений».
- 5. СП 28.13330.2012 Защита строительных конструкций от коррозии. Актуализированная редакция СНиП 2.03.11-85
- 6. ГЭСН 81-02-2001 Государственные элементные сметные нормы на строительные работы ГЭСН-2001. Сборник 1. Земляные работы. Выпуск 4, 2007г.
- 7. СП 131.13330.2012 актуализированная редакция СНиП 23-01-99* «Строительная климатология».
- 8. СП 14.13330.2016 «Строительство в сейсмических районах».
- 9. СП 20.13330.2011 "Нагрузки и воздействия" (Актуализированная редакция СНиП 2.01.07-85*), Москва, 2011г.
- 10. ГОСТ 5180-2015 «Грунты. Методы лабораторного определения физических характеристик».3
- 11. ГОСТ 12071-2014 «Грунты. Отбор, упаковка, транспортирование и хранение образцов».
- 12. ГОСТ 12248-2010 «Грунты. Методы лабораторного определения характеристик прочности и деформируемости».
- 13. ГОСТ 12536-2014 «Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава».
- 14. ГОСТ 20276-2012 «Грунты. Методы полевого определения характеристик прочности и деформируемости».
- 15. ГОСТ 20522-2012 «Грунты. Методы статистической обработки

результатов испытаний».

- 16. ГОСТ 21.302-2013 «Система проектной документации для строительства. Условные графические обозначения в документации по инженерно-геологическим изысканиям».
- 17. ГОСТ 23740-79 «Грунты. Методы лабораторного определения содержания органических веществ».
- 18. ГОСТ 25100-2011 «Грунты. Классификация».1
- 19. ГОСТ 25584-90 «Грунты. Методы лабораторного определения коэффициента фильтрации».
- 20. ГОСТ 23001-2012 «Грунты. Методы лабораторного определения плотности и влажности».
- 21. ГОСТ 30416-2012 «Грунты. Лабораторные испытания. Общие положения».
- 22. ГОСТ 9.602-2016 "Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии".
- 23. ГОСТ 30416-2012 "Грунты. Лабораторные испытания. Общие положения".
- 24. ГОСТ 31957-2012 "Методы определения щелочности и массовой концентрации карбонатов и гидрокарбонатов"
- 25. «Инженерная геология СССР. Том первый. Русская платформа». Издательство Московского университета. Москва, 1978.
- 26. Раскатов Г.И. Геоморфология и неотектоника территории Воронежской антеклизы. ВГУ, Воронеж, 1969.

«СОГЛАСОВАНО»:

М.П.

Генеральный директор ООО «Вертикаль»

«УТВЕРЖДАЮ»:

Директор

M.II

000 ПИ «Гипрокоммур

Вертикаль

Техническое задание

произволство инженерно-геологических изыскании

1 100495	
1. Наименование объекта	Многоквартирный многоэтажный жилой до
	поз. 4 по ул. Московской в г. Липецке. III эта
2. Вид строительства	Новое строительство
3. Стадия (этап) проектирования	Проектная и рабочая документация
4. Сроки проектирования и строительства	2018-2020
5. Характеристика проектируемых и	Уровень ответственности здания - II
реконструируемых предприятий	- Римания - П
(геотехнические категории объектов),	
/ровни ответственности зданий и	
ооружений	
 Характеристика ожидаемых воздействий 	Нет
на природную среду	1101
7. Исходные данные для обоснования	Нет
мероприятий по рациональному	ner
риродопользованию и охране природной	
реды, обеспечению устойчивости	
роектируемых зданий и сооружений и	
рэопасиых усровий учисти	
езопасных условий жизни населения	
. Сведения и данные о проектируемых бъектах	Жилой дом
. Цели и виды инженерных изысканий	Инженерно-геологические условия участка
О Пороцони напис	для разработки проектной документации
0. Перечень нормативных документов	СП 47.13330.2012. «Инженерные изыскания
	для строительства. Основные положения»
	СП 50-101-2004. «Проектирование и
	устройство оснований и фундаментов зданий
	и сооружений».
1. Данные о местоположении и границах	г. Липецк, ул. Московская
пощадки.	
2. Сведения о ранее выполненных	Не обнаружены
женерных изысканиях и исследованиях	
3. Дополнительные требования к	Нет
оизводству отдельных видов инженерных	
The same of the sa	
ысканий	
. Требования к точности, надежности,	СП 47.13330.2012. «Инженерные изыскация
Требования к точности, надежности, остоверности и обеспеченности	СП 47.13330.2012. «Инженерные изыскания для строительства. Основные положения»
Е. Требования к точности, надежности, остоверности и обеспеченности обходимых данных и характеристик при	для строительства. Основные положения».
Е. Требования к точности, надежности, остоверности и обеспеченности обходимых данных и характеристик при	для строительства. Основные положения». СП 50-101-2004. «Проектирование и
Требования к точности, надежности, остоверности и обеспеченности	устройство оснований и фундаментов зданий
Е. Требования к точности, надежности, остоверности и обеспеченности обходимых данных и характеристик при	для строительства. Основные положения». СП 50-101-2004. «Проектирование и

содержанию прогноза изменений природных и техногенных условий	
16. Сведения о необходимости выполнения исследований в процессе инженерных изысканий	Нет
17. Требования к оценке опасности и риска от природных и техноприродных процессов	Нет
18. Требования к составу, срокам, порядку и форме представления изыскательской продукции заказчику 19. Требование о составлении и	Технический отчёт в 4-х экземплярах на бумажном носителе и 1 экземпляр в электронном виде. Нет
представлении в составе договорной (контрактной) документации программы инженерных изысканий на согласование заказчику	
20. Наименование и местонахождение организации заказчика, фамилия, инициалы и номер телефона (факса) ответственного его представителя	ООО «ЖБИ2-Инвест»
21. Приложения	1. Форма 2. «Техническая характеристика проектируемых зданий и сооружений» 2. Ситуационный план.
22. Проектная организация, выдавшая задание	ООО ПИ «Гипрокоммундортранс»
 Фамилия, инициалы и номер телефона главного инженера проекта 	Першиков В.Е., (473) 255-59-13

Главный инж	енер проекта	Першиков В.Е.
<u>«</u> »	2018 г.	

Ассоциация в области инженерных изысканий «Саморегулируемая организация «ЛИГА ИЗЫСКАТЕЛЕЙ»

ОГРН 1097799006326 ИНН 7725256098 КПП772501001 Р/счет 40703810402200000169 в АО «АЛЬФА-БАНК» г. Москва 109548, г. Москва, Проектируемый проезд №4062, д. 6, стр.16, 5 этаж, комн.27, БЦ «ПОРТ ПЛАЗА». Тел.: (495) 411–94–53; <u>www.li-sro.ru; info@li-sro.ru</u>

ВЫПИСКА из реестра членов саморегулируемой организации

07.05.2018

№ ЛИ-773/18

(дата)

Ассоциации в области инженерных изысканий «Саморегулируемая организация «ЛИГА ИЗЫСКАТЕЛЕЙ», 109548, г. Москва, Проектируемый проезд №4062, д. 6, стр. 16, 5 этаж, комн.27, регистрационный номер в государственном реестре саморегулируемых организаций: СРО-И-013-25122009, электронный адрес Ассоциации в сети Интернет: <u>www.li-sro.ru</u>

№ п/п	Вид информации	Сведения
1.	Сведения о члене саморегулируемой организации: идентификационный номер налогоплательщика, полное и сокращение (при наличии) наименование юридического лица, адрес места нахождения, фамилия, имя, отчество индивидуального предпринимателя, дата рождения, место фактического осуществления деятельности регистрационный номер члена саморегулируемой организации в реестре членов и дата его в реестре членов	ИНН: 4826049575 Полное наименование: Общество с ограниченной ответственностью "Вертикаль Сокращённое наименование: ООО "Вертикаль" Юридический адрес: 398036, г. Липецк, ул. Катукова, д. 19 ФИО ИП: Дата рождения ИП: Рег. номер в реестре членов СРО: 333 Дата регистрации в реестре членов СРО: 22.01.2018
2.	Дата и номер решения о приёме в члены саморегулируемой организации, дата вступления в силу решения о приёме в члены саморегулируемой организации	Протокол Президиума № 287 Дата Президиума: 22.01.2018 Дата вступления в силу решения о приёме в члены СРО: 22.01.2018
3.	Дата и номер решения об исключении из членов саморегулируемой организации, основания исключения	Основания исключения: Дата исключения:
4.	Сведения о наличие у члена саморегулируемой организации права выполнять инженерные изыскания объектов капитального строительства по договору подряда на выполнение инженерных изысканий заключаемым с использованием конкурентных способов заключения договоров: а) в отношении объектов капитального строительства (кроме особо опасных, технически сложных и уникальных объектов, объектов использования атомной энергии); б) в отношении особо опасных, технически сложных и уникальных объектов капитального строительства (кроме объектов использования атомной энергии); в) в том числе объектов использования атомной энергии.	Не имеет права принимать участие в заключении договоров подряда на выполнение инженерных изысканий с использованием конкурентных способов заключения договоров.

5.	Сведения об уровне ответственности члена саморегулируемой организации по обязательствам по договору подряда на выполнение инженерных изысканий, в соответствии с которым указанным членом внесён взнос в компенсационный фонд возмещения вреда	Размер взноса в компенсационный фонд возмещения вреда составляет 50 000 рублей, что соответствует первому уровню ответственности в соответствии с которым имеет право выполнять инженерные изыскания, стоимость которых по одному договору подряда на выполнение инженерных изысканий не превышает двадцать пять миллионов рублей Имеет право принимать участие в заключении договоров подряда на выполнение инженерных изысканий: а) в отношении объектов капитального строительства (кроме особо опасных, технически сложных и уникальных объектов, объектов использования атомной энергии_
6.	Сведения об уровне ответственности члена саморегулируемой организации по обязательствам по договору подряда на выполнение инженерных изысканий, заключаемым с использованием конкурентных способов заключения договоров в соответствии с которым указанным членом внесён взнос в компенсационный фонд обеспечения договорных обязательств.	Размер взноса в компенсационный фонд обеспечения договорных обязательств составляет 0 рублей, что не соответствует ни одному уровню ответственности. В соответствии с этим не имеет права принимать участие в заключении договоров подряда на выполнение инженерных изысканий с использованием конкурентных способов заключения договоров
7.	Сведения о приостановлении права выполнять инженерные изыскания объектов капитального строительства.	

Директор (должность руководителя)

Е.В. Жучкова (ФИО руководителя)

ФЕДЕРАЛЬНОЕ БЮДЖЕТПОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В ЛИПЕЦКОЙ ОБЛАСТИ»

ЗАКЛЮЧЕНИЕ

No 74

О СОСТОЯНИИ ИЗМЕРЕНИЙ В ЛАБОРАТОРИИ

Выдано «30» октября 2017 г. Действительно до «30» октября 2020 г.

Настоящее заключение удостоверяет, что

комплексная испытательная лаборатория

население льборатории

398532 Липенкая обл., Липенкий р-оп, с. Подгорное, ул. 9 мая, д. 31

место нахождения либоратории

000 «Вертикаль»

наименование горидического лица

398036 г. Липенк, ул. Катукова, 19

имеет необходимые условия для выполнения измерений в области деятельности согласно приложению.

Заключение оформлено по результатам проведенной оценки состояния измерений

Приложение: перечень объектов и контролируемых в них показателей на 2 листах

Дпректор

VП.

А.Н. Сидоров

398017, г. Липеци, ул. Грашина, а. 9а

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАЦИЙ В ЛИПЕЦКОЙ ОБЛАСТИ»

Приложение к Заключению об оценке состояния измерений

	N2	74	_OT	« <u>3</u>	<u>0</u> »_	ектября	_20171
действ	ител	ьно до_	ğ	30.10).202	0	
						ия 2 листах	с лист 1

Комплексная испытательная лаборатория ООО «Вертикаль» ПЕРЕЧЕНЬ ОБЪЕКТОВ И КОНТРОЛИРУЕМЫХ В НИХ ПОКАЗАТЕЛЕЙ

№ n/n	Объект	Определяемые показатели
1	2	3
		Физико-механические показателя;
		Влажность естественная (природная)
		Влажнесть гигроскопическая
		Влажитесть на границе текучести
		Влаж тесть на границе раскатывания
		Вдажнесть объемная
		Влажность на пределе усадки
		Плотность грунта
1		Максима диая плотность
	Трупты природные	Гранулометрический состав песчаных груптов
		Гранулометрический состав глинистых грунтов
		Коэффициент фильтрации пыловатых и глинизтых грунтов
		Коэффициент фильтрации песков
		Деформация обрачаю от нагрузки в сухом состоянии
		Дэформалия образца от нагрузки в водонасыщенном
		COCTOSENVA
		Сопротивление грунта срезу
		Усядка грунта
		Все сухого грунта
		Вее сухих растительных осталков
		Коррозийная агрессивность
		Физико-Химические показатели:
	15-297	plI водной суспензии
	Грунты телличные.	Кальций
	Почвы	Магний
		Ион хаорида
2		Сульфатион
		Сухой эстаток

№ п/п	Объект	Определяемые показатели
1	2	3
		Органолентические показатели:
		Вкус, запах, цветность
		Физико-Химические показатели:
3		Водородный показатель, рН
3	Вода питьевая	Общая жесткость
3		Хлериды
		Сульфагы
		Гидрокарбонаты
		Кальций
		Магний
		Сухой остаток
		Физико-Химические показатели:
ā.	Вода природная:	Водородный показатель, рН
	поверхностные водоёмы, подземные	Общая жесткость
	воды	Сульфаты
	7777700	Гидрокарбонаты

А.Н.СИДОРОВ

Согласовано

Утверждаю

Директор ООО ПИ «Гипрокоммундортранс»

Прил. А. Грошева

2018г

ПРОГРАММА

на выполнение инженерно-геологических изысканий

Содержание	Технические данные
1 Наименование и адрес	ООО ПИ «Гипрокоммундортранс»
заказчика, ФИО и номер	394036, г. Воронеж, проспект Революции, 1а, помещение 6
телефона ответственного	
представителя	
2 Наименование объекта	Многоквартирный многоэтажный жилой дом со встроенно-пристроенными
2 Transienobaline Cobekta	нежилыми помещениями поз.4 по ул. Московской, 155 в г. Липецке. ІІ этап
3 Вид строительства и	Новое строительство.
уровень ответственности	Уровень ответственности – нормальный.
	Установление геолого-литологического разреза, определение физико-механических
4 Цель инженерно-	
геологических изысканий	свойств и агрессивности грунтов, гидрогеологических условий участка
5 Перечень нормативных	1. СП 47.13330.2012, актуализированная версия СНиП 11-02-96. «Инженерные
документов	изыскания для строительства. Основные положения».
	2. СП 22.13330.2011 «СНиП 2.02.01-83» «Основания зданий и сооружений».
	3. СП 28.13330.2012«СНиП 2.03.11-85. «Защита строительных конструкций от
	коррозии».
	4. СП 131.13330.2012 «Строительная климатология». Актуализированная
	редакция СНиП 23-01-99*.
	5. ГОСТ 25100-2011. «Грунты. Классификация».
	6. ГОСТ 20522-2012. "Грунты. Методы статистической обработки результатов
	испытаний". Актуализированная редакция ГОСТ 20522-96.
	7. СП 24.13330.2011 "СНиП 2.02.03-85 Свайные фундаменты"
	8. Действующие ГОСТы по лабораторным определениям физико-механических,
	коррозионных свойств грунтов и исследованиям воды.
	9. Правила безопасности на инженерно-геологических работах (ПБ 08-37-2005).
	10. ГОСТ 20276-2012 «Грунты. Методы полевого определения характеристик
	прочности и деформируемости»
6 Местоположение участка	г. Липецк, ул. Московская, 155
изысканий	
7 Мероприятия по	Инженерно-геологические работы будут выполняться бригадой ООО «Вертикаль»,
обеспечению безопасных	базирующейся в г. Липецк. Доставка персонала к месту работ будет выполняться
условий труда и охране	автотранспортом. Охрана труда организуется в соответствии с требованиями
окружающей среды	инструкции по безопасному ведению работ.
	Ответственный исполнитель полевых работ до выезда на объект проверяет
	прохождение всеми работниками техники безопасности (экзамены, инструктаж) и
	наличия у них соответствующего удостоверения на право ведения работ, а также
	наличие средств защиты и приспособленность транспорта для перевозки грузов и
	людей. По прибытии на объект руководитель обязан выявить наиболее опасные
	участки и провести пообъектный инструктаж со всеми работниками своего
	подразделения. Перед началом полевых работ на объекте необходимо установить
	наличие подземных коммуникаций и согласовать точки бурения и проведение других
	полевых измерений с организациями, ответственными за эксплуатацию подземных
	коммуникаций. После окончания буровых работ выработки засыпаются местным
	грунтом с послойной трамбовкой. При выполнении работ строго соблюдать
	требования ПБ 08-37-2005.
8 Изученность района и	Архивные материалы инженерно-геологических изысканий по проектируемому
участка работ	участку работ заказчиком не представлены.
J Invika paooi	учистку рисст зикизчиком не пресстиолены.

9 Геоморфологическая,	В геологическом строении участка принимают участие отлог	жения чете	вертичного
геологическая и	и нижнемелового возраста.		1
гидрогеологическая	В разрезе участка выделяются следующие литологические	г разности	грунтов.
характеристики участка	насыпной грунт, суглинки от твёрдых до полутвёрдых, глине	ы полутвёр	дые, пески
	средней крупности и мелкие. Гидрогеологические условия участ	тка характ	еризуются
	наличием подземных вод.		
	Примечание: Геологический разрез в определенной степени у	словен и пр	и отличии
	его от фактического возможно изменение видов и объемов раб	om.	
10 Методика работ	На участке изысканий планируется проведение рекогносциров	зочных и ра	азбивочных
	работ, буровых, геофизических и лабораторных работ с кам	еральной о	бработкої
	материалов.		
	После выполнения изысканий составляется технический отчет	n.	
	Рекогносцировочные работы – выявление изменений рельеф	а, гидрогео	логических
	условий и техногенных воздействий, инструментальная раз	бивка точ	ек бурения
	скважин.		
	Буровые работы выполняются механическим способом буровы		
	2.02 буровыми бригадами в составе трёх человек – инженер-ге	голог, буров	вой мастер
	и помощник бурового мастера.		
	Количество буровых скважин в количестве 6 назначено	в соотве	етствии с
	техническим заданием.		
	Бурение скважин осуществляется колонковым и комбинир		(шнеково
	колонковым) способом по сухим песчанистым и глинистым грун		
	Опытные работы методом статического зондирования пр		
	комплекта «ПИКА 17», с использованием аппаратуры, разрабо		
	Герсеванова Н.М., регистрирующей результаты статичес		
	условиях природного залегания грунтов, со снятием показа	<i>аний через</i>	0,1м, np
	скорости погружения зонда 1,0м в минуту.		
	Геофизические работы. Определение УЭС осуществляется пр		
	четырех электродной схеме (Веннера), наличия блуждающ		
	прибором ЭВ 2234 с использование неполяризующихся электрод		
	Опробование. Пробы отбираются из каждой литологическ		
	мощностью более 0.2м. По каждому выделенному ИГЭ будет		
	не менее 6 частных значений физико-механических характер		
	менее 10 частных значений физических характеристик грунтов	з для статі	істическої
	обработки данных.		
	Лабораторные испытания. С целью получения нормат		
	характеристик грунтов будут выполнены лабораторн	, T	еления,
	соответствие с действующими нормативными документа	ми, инстр	укциями
	стандартами.		
	Виды и объемы лабораторных испытаний назначены	в соотве	тствии
	требованиями приложений Е и Ж СП 47.13330.2012.		
	СВОДНАЯ ТАБЛИЦА ВИДОВ И ОБЪЕМОВ РА		
	Виды работ	Ед. изм.	Кол-во
	Механическое бурение скважин диаметром 135мм	Шт/м.	6/150.0
	Статическое зондирование	Точка Шт.	50
	Отбор монолитов и проб грунтов Определение УЭС/наличия блуждающих токов	Точка	3/1
	Лабораторные исследования:		-/-
	комплекс определения физико-механических характеристик грунтов	Анализ	12
	комплекс определения физических характеристик грунтов	Анализ	38
	определение коррозионной агрессивности грунтов	Анализ Анализ	12
	химический анализ воды Камеральная обработка материалов	Анализ	-
	Камеральные работы - сбор информации, работа с ар	хивным ма	атериалом
	обработка полевых инженерно-экологических работ и лабора		
	исследований и испытаний, составление технического отчета.		·
11 К			
11 Контроль. Приемка работ	Полевые и камеральные работы контролируются и принимают		
10.77	специалистом и начальником отдела инженерно-геологических		
12 Требования к составу,	Технический отчет об инженерно-геологических изысканиях на		
форме и срокам	в трёх экземплярах и один экземпляр электронной версии перед	аются Зака	зчику.
представления технической			
документации	Y		

H

Начальнику Управления строительства и архитектуры Липецкой области Шорстову А.М. (ONED)

Заявление

Общество с ограниченной ответственностью «Вертикаль» (полное наименование заявителя) просит осуществить регистрацию выполнения перечисленных ниже видов работ по

инженерным изысканиям для подготовки проектной документации, строительства. реконструкции, капитального ремонта объектов капитального строительства по объекту (нужное подчеркнуть):

«Многоквартирный многоэтажный жилой дом со встроенно-пристроенными нежилыми помещениями поз.4 по ул. Московской, 155 в г. Липецке. П этап»

Заказчик: ООО ПИ «Гипрокоммундортранс»

Исполнитель:	Общество с сграниченной ответственностью «Вертика	UII->>
-	инженер-геолог – Лукьянова М.А.	
Договор, на осно	(лодное наименозание исполнителя) овании которого будут выполняться инженерно-геологические	изыскания
300 25.5	Договор №2392-Ш-4-И3-СП1 от 11 мая 2018 г.	
	(DOWNSTRAM NORTHWEST TOTOROOM)	

Выписка из реестра членов саморегулируемой организации от 07.05.2018 №ЛИ-773/18

№ n/n	Наименование видов работ по инженерным	Сроки выг раб		Объем	Стоимость
	изысканиям	окончание	работ	работ	
1	Инженерно-геологические изыскания	14.05.2018	09.06.2018	150,0 _M	По факту

Приложения:

1) Копия договора

2) Техническое задание

3) Карта фактического материала

4) Программа на производство инженерно-причиче

Руководитель заявителя:

Гудин О.О.

(Ф. И.O.)

Зарегистрировано

№ 357 ст «СВ» _ ОС _ 2018 года

Управление строительства и Брхитектуры Липонкай области 390001, г. Лыпецк, ул. Ворошилова, 7

20
\boldsymbol{x}

		M					C	Содерж	ание ч	астиц,	%				Z	ľa,	%		Плот	НОСТЬ	сухого	Коэф.	порис	с-тости	l 42					
Лаб. № пробы	$ m N^{2}$ выработки	Глубина отбора пробы,	м° ИГЭ	свыше 10 мм	10 - 5 мм	5 - 2 mm	2 - 1 mm	1 - 0,5 мм	0,5 - 0,25 мм	0,25 - 0,10 MM	0,10 - 0,05 MM	0,05 - 0,01 мм	0,01 - 0,005 мм	меньше 0,005 мм	Степень неоднородности грансостава	тлотность частиц грунта, г/см³	кность природная,	Плотность грунта прир. сложения, г/см ³	ного сложе-	ом со-	потном со-	юго сложе-	акс. рыхлом со- ании	лотном со-	ъ на гр. теку	Влажность на гр. раскатывания, %	Число пластичности	Показатель текучести	Коэф. водонасыщения	Наименование грунта по ГОСТ 25100-2011
				10	5	2	1	0,5	0,25	0,1	0,05	0,01	0,005	0,001	Cu	$\rho_{\rm s}$	W	ρ	ρ_{d}	$\rho_{d,min}$	$\rho_{d,max}$	e	e _{max}	e _{min}	W_{L}	W _p	I_p	I_{L}	S _r	
361	1	4,00	3													2,71	13,02	2,02				0,516			24,85	13,58	11,27	-0,05	0,68	Суглинок легк. тверд. среднедеформ.
362	1	6,00	3					3,2	6,6	13,3	30,2	11,5	15,2	20,0		2,72	12,95	2,00	1,77			0,536			24,12	13,36	10,76	-0,04	0,66	Суглинок песчанист. легк. тверд.
384	1	8,70	4													2,72	15,85	2,01	1,74			0,568			30,25	15,02	15,23	0,05	0,76	Суглинок тяжел. полутверд. среднедеформ.
385	1	9,20	4													2,72	16,63	2,02	1,73			0,570			31,20	16,00	15,20	0,04	0,79	Суглинок тяжел. полутверд.
404	1	11,00	5			0,2	2,3	5,2	45,5	34,2	12,6				3,60	2,66	7,52													Песок ср.крупн. неоднород.
427	1	12,20	6													2,72	16,23	2,08	1,79			0,520			31,25	15,52	15,73	0,05	0,85	Суглинок тяжел. полутверд. среднедеформ.
405	1	13,50	5			2,3	6,3	15,2	42,2	20,2	13,8				4,69	2,66	6,85	1,86	1,74			0,528				-				Песок ср.крупн. плотн. неоднород. малой степени водонас.
406	1	14,00	5			1,2	2,5	15,2	42,2	23,3	15,6				4,57	2,66	7,02	1,85	1,73			0,539								Песок ср.крупн. плотн. неоднород. малой степени водонас.
283	1	14,50	6													2,72	15,48	2,07	1,79			0,517			30,00	14,97	15,03	0,03		Суглинок тяжел. полутверд.
284	1	15,00	6															2,08				0,506			31,31	14,97	16,34	0,01	0,81	Суглинок тяжел. полутверд.
444	1	20,00	7		1,1	2,3	3,6	7,5	35,0	45,0	5,5				2,76	2,67	5,95	1,85	1,75			0,529				-			0,30	Песок мелкий плотн. однород. малой степени водонас.
445	1	22,00	7			2,3	3,6	5,8	33,3	48,0	7,0				2,63	2,67	6,20	1,86	1,75			0,524								Песок мелкий плотн. однород. малой степени водонас.
446	1	24,00	7			1,2	2,3	6,3	15,2	60,2	14,8				2,54	2,67	5,95	1,84	1,74			0,537								Песок мелкий плотн. однород. малой степени водонас.
233	2	4,20	3					3,4	9,9	21,3	38,1	7,6	6,6	13,1		2,71	14,98	2,03	1,77			0,535			25,83	16,86	8,97	-0,21		Суглинок песчанист. легк. тверд. среднедеформ.
234	2	5,50	3					5,6	14,9	33,7	36,7	2,4	1,9	4,8		2,72	13,28	2,02	1,78			0,525								Суглинок песчанист. тяжел. полутверд.
235	2	8,50	4													2,72	16,42	2,02	1,74			0,568								Суглинок тяжел. полутверд.
407	2	10,50	5			2,3	3,6	16,3	42,2	23,3	12,3				4,35	2,66	8,02	1,86	1,72			0,545							0,39	Песок ср.крупн. плотн. неоднород. малой степени водонас.
236	2	11,30	6															2,06				0,554			31,56	16,64	14,92	0,07		Суглинок тяжел. полутверд. среднедеформ.
237	2	11,50	6															2,07				0,553								Суглинок тяжел. полутверд.
238	2	13,00	5			0,1	0,8	5,1	44,3	31,3	18,4				3,99	2,66	8,62	1,87	1,72			0,545				-				Песок ср.крупн. плотн. неоднород. малой степени водонас.
239		14,20																2,09				0,508	_		31,56	14,72	16,84	0,07		Суглинок тяжел. полутверд.
240		14,50															_	2,08	_			0,515	_		-			-		Суглинок тяжел. полутверд.
241		17,00																2,07	_			0,551						_	_	Суглинок тяжел. полутверд. среднедеформ.
242		17,50																2,09				0,538						_	_	Суглинок тяжел. полутверд.
243		20,00															_	2,10				0,516								Суглинок тяжел. полутверд.
244		20,50																2,08				0,536								Суглинок тяжел. полутверд.
363		5,00															13,66					,				14,52				Суглинок легк. тверд.
386		8,00															16,63	-								16,02			_	Суглинок тяжел. полутверд.
		8,50															17,12									16,02				Суглинок тяжел. полутверд.
408		10,50				1,2	2,5	15,2	42,2	22,2	16,7				4,69		6,96													Песок ср.крупн. неоднород.
409		12,00				- 1											8,22													Песок ср.крупн. неоднород.
428		15,00					, ,	,							,		16,85								32,25	16,02	16,23	0,05	_	Суглинок тяжел. полутверд.
		17,50															17,12									16,55				Суглинок тяжел. полутверд.
		20,00															18,22									17,45				Суглинок тяжел. полутверд.

						86-05-2018-ИГИ	I-2.6				
Изм	Кол уч	Лист	№ док	Подп	Дата						
Зав.	лаб.	Ланина	a /	107	05.18		Стадия	Лист	Листов		
						Ведомость результатов анализа	ПР	1	5		
						гранулометрического состава и физических свойств грунтов	Комплексная испытательная лаборатория ООО «Вертикаль»				

		г, м					C	Содерж	ание ча	астиц,	%				СТИ	нта,	%	p.	Плот	ность о унта, г/	сухого /см ³	Коэф. п	орис-то	сти	-ah	rp rp			
Лаб. Nº пробы	№ выработки	Глубина отбора пробы,	ели ⁰и	свыше 10 мм	10 - 5 мм	5 - 2 mm	2 - 1 mm	1 - 0,5 мм	0,5 - 0,25 мм	0,25 - 0,10 мм	0,10 - 0,05 мм	0,05 - 0,01 мм	0,01 - 0,005 мм	меньше 0,005 мм	Степень неоднородности грансостава	Плотность частиц грунта, $\Gamma/\text{см}^3$	Влажность природная,	Плотность грунта прир. сложения, г/см ³	природного сложе- ния	в макс. рыхлом со- стоянии	в макс. плотном со- стоянии	ного сло	в макс. рыхлом со- стоянии в макс. плотном со-		та гр.	Влажность на гр. раска- тывания, %	Число пластичности	Показатель текучести	Жу Наименование грунта по ГОСТ 25100-2011 Ф Ф Ф
350	4	1,80	2	10	5	² 3,6	12,2	0,5	0,25 35,2	0,1	0,05		0,005		C _u	ρ _s	W 13,02	ρ	ρ _d	$\rho_{d,min}$	$\rho_{d,max}$	e 0,599	e _{max} e	min	W_L	W_p	I_p	I_L	S _r
		2,00			2,3					-	-				-														0,58 Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
351	4	_	2		2,0				30,2													0,606							0,54 Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
352	4	2,20	2		1,2				32,0	_					_							0,606							0,62 Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
353	4	2,50	2		1,1	1,2			30,2													0,609							0,60 Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
354	4	3,00	2		0,5				35,0							_		1,90	1,66			0,598							0,63 Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
355	4	4,00	2		1,2	_	_	_	32,0	_	_				_	_	_												Песок ср.крупн. неоднород.
356	4	5,00	2		1,2	2,0	12,3	25,2	33,3	11,2	14,8				6,13										0 (00)	- 0-	40 ==	0.00	Песок ср.крупн. неоднород.
364	4	7,50	3														15,02							_	26,20 1				
388	4	9,00	4														15,63							- 13	30,85 1	5,02	15,83	0,04	Суглинок тяжел. полутверд.
410		10,20				1,2			45,2	-																			Песок ср.крупн. неоднород.
411		12,00					_		45,2	_					_	2,66	_												Песок ср.крупн. неоднород.
447		20,00					_		22,2	_					_		7,02												Песок мелкий однород.
448		22,00				1,1			25,5								8,20												Песок мелкий однород.
449	4	24,00	7			2,2	2,5	8,5	25,5	49,5	11,8				2,66		9,02												Песок мелкий однород.
365	5	5,00	3													2,71	14,45	2,01	1,76			0,543		1	25,20 1	5,23	9,97	-0,08	0,72 Суглинок легк. тверд.
366	5	5,50	3													2,71	14,47	2,02	1,76			0,536		1	25,85 1	5,44	10,41	-0,09	0,73 Суглинок легк. тверд.
389	5	7,20	4													2,72	16,23	2,03	1,75			0,557			31,12 1	5,25	15,87	0,06	0,79 Суглинок тяжел. полутверд. среднедеформ.
390	5	8,00	4													2,72	18,20	2,03	1,72			0,584			33,02 1	7,20	15,82	0,06	0,85 Суглинок тяжел. полутверд.
412	5	9,40	5			2,2	2,3	12,3	44,2	25,5	13,5				4,24	2,66	7,48	1,87	1,74			0,529							0,38 Песок ср.крупн. плотн. неоднород. малой степени водонас.
413	5	12,50	5			1,2	2,3	16,3	42,2	22,2	15,8				4,66	2,66	8,25	1,87	1,73			0,540							0,41 Песок ср.крупн. плотн. неоднород. малой степени водонас.
433	5	14,00	6													2,72	15,95	2,08	1,79			0,516		1	29,99 1	5,20	14,79	0,05	0,84 Суглинок тяжел. полутверд. среднедеформ.
434	5	16,50	6													2,72	16,65	2,09	1,79			0,518							0,87 Суглинок тяжел. полутверд. среднедеформ.
435	5	20,10	6													2,72	17,12	2,09	1,78			0,524		:	32,02 1	6,55	15,47	0,04	0,89 Суглинок тяжел. полутверд.
436	5	23,00	6													2,72	18,01	2,08	1,76			0,543		:	32,52 1	7,22	15,30	0,05	0,90 Суглинок тяжел. полутверд.
367	6	3,50														2,71	13,69								24,15 1				
368	6	4,20														_	15,25								26,02 1				
391	6																17,89							_	32,25 1				
392	6	7,40															18,22							-	32,20 1	_	-		
273	6					1,7	9.2	20.7	28,7	26.5	13.2				4.86				1.73			0,535			,	,	- ,	- ,	0,62 Песок ср.крупн. плотн. неоднород. ср. степени водонас.
274		10,00				-,.			48,8	-												0,539							0,69 Песок ср. крупн. плотн. неоднород. ср. степени водонас.
437		14,30					-,1	3,5	10,0						2,10		15,57		2,73			3,007			29,55 1	5.00	14.55	0.04	
438		15,50														<u> </u>	16,21							_	30,20 1	_	_		
275		17,50			0,2	3,6	1 7	8.7	34,6	41 1	10.1				3.15										20,20	2,50	11,01	0,0 I	Суглинок тяжел. полутверд. Песок мелкий неоднород.
276		20,50			٠,2	0,3	,		24,2	,	,				,	-													Песок мелкий неоднород.
277		24,00				0,3			24,9																				Песок мелкий однород. Песок мелкий неоднород.
393	7	6,00					0,0	0,0	41,7	12,0	41,0				3,44		17,45		1 71			0,589		٠,	32 20 1	7 00	15 20	0.03	0,81 Суглинок тяжел. полутверд.
393	7															_	18,47					0,595							
414		9,40	4			2.7	7.6	12.7	44,2	27 7	147				1 17							0,541			J4,00 I	0,44	14,00	0,02	0,84 Суглинок тяжел. полутверд.
414	1	7, 4 0	3			4,3	3,0	14,3	44,4	43,3	14,3				4,43	4,00	13,34	1,70	1,/3]	0,541							0,67 Песок ср.крупн. плотн. неоднород. ср. степени водонас.

			86-05-20182.6	2

		I, M					Co	одержа	ание ча	астиц,	%				ито	нта,	%	ē.	Плот	ность о	сухого /см ³	Коэф.	порис	-тости	че-	a-			
Лаб. Nº пробы	$ m N^2$ выработки	Глубина отбора пробы,	№ ИГЭ	свыше 10 мм	10 - 5 мм	5 - 2 mm	2 - 1 mm	1 - 0,5 мм	0,5 - 0,25 мм	0,25 - 0,10 MM	0,10 - 0,05 MIM	0,05 - 0,01 MM	0,01 - 0,005 мм	меньше 0,005 мм	Степень неоднородности грансостава	Плотность частиц грунта, r/cm^3	Влажность природная,	Плотность грунта прир.	природного сложе-	ом со-	в макс. плотном со- стоянии	природного сложе- ния	в макс. рыхлом со- стоянии	в макс. плотном со- стоянии	Влажность на гр. теку сти, %	Влажность на гр. раска- тывания, %	Число пластичности	Показатель текучести	Жодо Эф. водонование грунта по ГОСТ 25100-2011
41 5		10.10	_	10	5	2	1	0,5	0,25	0,1	0,05	0,01			C _u	$\rho_{\rm s}$	W	ρ	$\rho_{\rm d}$	$\rho_{d,min}$		e	e _{max}	e _{min}	W_L	W _p	I_p	I_L	S _r
415		12,10				1,2	2,5	18,5	40,2	23,3	14,3				4,58				1,72			0,542			70.00	1 (00	1400	0.05	0,70 Песок ср.крупн. плотн. неоднород. ср. степени водонас.
439		13,60															16,65	_								16,00			Суглинок тяжел. полутверд.
440		15,00			0.5	0.0	0.7		20.5	44.5	155				7.05	2,72	17,11								31,20	16,95	14,25	0,01	Суглинок тяжел. полутверд.
450		17,40			0,5		2,3	_	28,5								7,51												Песок мелкий неоднород.
451		20,00					2,5		25,2								7,95												Песок мелкий однород.
452	7	23,00	7			2,0	2,5	5,5	35,3	39,9	14,8				3,43		8,52												Песок мелкий неоднород.
357	8	1,70	2		0,5	1,2	13,3	26,6	32,0	10,2	16,2				6,56	2,66	12,89	1,87	1,66			0,606							0,57 Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас. незасол.
358	8	2,00	2		1,1	1,5	16,3	23,3	35,0	11,5	11,3				5,81	2,66	13,02	1,89	1,67			0,591							0,59 Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
359	8	2,30	2		1,0	1,2	13,3	22,3	36,3	13,3	12,6				5,41	2,66	14,22	1,90	1,66			0,599							0,63 Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
278	8	2,50	2		0,2	2,1	11,5	24,6	31,8	16,2	13,6				5,62	2,66	13,50	1,91	1,68			0,581							0,62 Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
360	8	2,70	2		0,5	1,2	2,3	22,3	38,5	10,5	24,7				5,85	2,66	15,02	1,85	1,61			0,654							0,61 Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
369	8	4,00	3													2,72	12,95								24,10	13,32	10,78	-0,03	Суглинок легк. тверд.
370	8	5,10	3													2,71	15,55								25,85	16,02	9,83	-0,05	Суглинок легк. тверд.
395	8	7,70	4													2,72	16,25								32,20	15,89	16,31	0,02	Суглинок тяжел. полутверд.
279	8	9,60	5			0,5	1,9	17,2	52,1	20,4	7,9				3,48	2,66	14,65												Песок ср.крупн. неоднород.
441	8	14,00	6													2,72	18,22								32,36	17,52	14,84	0,05	Суглинок тяжел. полутверд.
453	8	18,00	7			1,2	2,3	6,3	38,5	42,0	9,7				3,01		7,84												Песок мелкий неоднород.
454	8	20,50	7			1,2	2,5	8,5	33,3	39,9	14,6				3,46		8,63												Песок мелкий неоднород.
371	9	2,50	3													2,71	14,78	2,02	1,76			0,540			25,03	15,85	9,18	-0,12	0,74 Суглинок легк. тверд.
372	9	4,00	3													2,71	14,95	2,03	1,77			0,535			26,02	15,99	10,03	-0,10	0,76 Суглинок легк. тверд.
245	9	5,20	4					2,2	8,5	23,2	38,9	7,0	6,6	13,6		2,72	16,98								31,81	16,71	15,10	0,02	Суглинок песчанист. тяжел. полутверд.
246	9	5,50	4					3,2	9,1	24,7	37,4	8,0	5,3	12,3		2,72	17,51								30,63	15,71	14,92	0,12	Суглинок песчанист. тяжел. полутверд.
416	9	9,00	5			1,1	2,3	15,5	44,2	23,3	13,6				4,39	2,66	13,25	1,95	1,72			0,545							0,65 Песок ср.крупн. плотн. неоднород. ср. степени водонас.
247		12,00													4,68							0,537							0,71 Песок ср.крупн. плотн. неоднород. ср. степени водонас.
248	9	14,50	6				-									2,72	17,92	2,10	1,78			0,527			32,01	16,71	15,30	0,08	0,92 Суглинок тяжел. полутверд. среднедеформ.
442	9	15,50	6													2,72	18,02	2,09	1,77			0,536							0,91 Суглинок тяжел. полутверд.
455		19,00				2,2	2,5	8,5	29,9	42,5	14,4				3,26	2,67	8,21	1,89	1,75			0,529				-		-	0,41 Песок мелкий плотн. неоднород. малой степени водонас.
249	9	24,00	7			0,1	1,1	8,3	39,9	35,6	15,0				3,71	2,67	9,82	1,88	1,71			0,560							0,47 Песок мелкий плотн. неоднород. малой степени водонас.
373		4,00							6,3								15,52					0,550			26,63	16,69	9,94	-0,12	0,76 Суглинок песчанист. легк. тверд. среднедеформ.
374		5,50										-	-				16,02				_	0,557							0,78 Суглинок легк. тверд.
396		7,00	4					2,3	8,5	10,2	40,3	11,2	12,3	15,2		_	17,12				_	0,577							0,81 Суглинок песчанист. тяжел. полутверд.
417		9,00	5			1,2	2,5	_	_	_				_	4,62							0,532			,			•	0,64 Песок ср.крупн. плотн. неоднород. ср. степени водонас.
418		11,00					_	-	-	-					4,84							0,538							0,66 Песок ср.крупн. плотн. неоднород. ср. степени водонас.
443		13,00					,	,		,							16,95		,						30,52	16,02	14,50	0,06	Суглинок тяжел. полутверд.
280		14,70				0,4	1,4	7,2	31,5	49,3	10,2				2,56										,			•	Песок мелкий однород.
281		17,00			0,4										3,07														Песок мелкий неоднород.
									,										-	-					-				

		M					Co	олерж	ание ч	астин	%				-	a,	0			ность (Ko	эф. пор	оис-					
		ы, в		<u> </u>				-д-рж		,	. •	I	1	1	СТИ	/HT	я, %	ıp.	гр	унта, г	/CM ³		тости	ı	куче	Ka-			_K
і. № пробы	зыработки	бина отбора пробы,	ИГЭ	ше 10 мм	. 5 мм	2 мм	1 мм	0,5 мм	- 0,25 мм	5 - 0,10 мм	0 - 0,05 мм	5 - 0,01 мм	1 - 0,005 мм	меньше 0,005 мм	Степень неоднороднс грансостава	Плотность частиц грунта, r/cm^3	Влажность природная,	Плотность грунта прир. сложения. г/см ³	природного сложе-	в макс. рыхлом со- стоянии	в макс. плотном со- стоянии	природного сложе- ния	в макс. рыхлом со- стоянии	в макс. плотном со- стоянии	на гр. те	Влажность на гр. раска- тывания, %	ло пластичности	Показатель текучести	Наименование грунта по ГОСТ 25100-2011
Лаб.	N^{2}	Глу	Nº I	CBЫ	10 -	5 - 2	2 - 2	1 - (0,5	0,25	0,10	0,0	0,01	мен	Стег		Вла	Пло	при	B Mg	B ME	при	B Më CTO	B ME	Вла	Вла тыв	Чис	Пок	Коэф.
				10	5	2	1	0,5	0,25	0,1	0,05	0,01	0,005	0,001	Cu	ρ_{s}	W	ρ	ρ_{d}	$\rho_{d,min}$	$\rho_{d,max}$	e	e _{max}	e _{min}	W_{L}	W_p	I_p	I_L	S _r
282	10	17,60	7		0,1	2,3	4,7	3,3	25,5	47,0	17,1				2,99	2,67	8,50												Песок мелкий однород.
375		1,50	3													2,71	15,50	2,01	1,74			0,557			25,85	16,03	9,82	-0,05	5 0,75 Суглинок легк. тверд.
376		3,00	3					2,2	5,5	6,3	36,0	12,5	15,2	22,3			14,89					0,565						_	7 0,71 Суглинок песчанист. легк. тверд.
377		5,00	3														16,21					0,559			-		-		7 0,79 Суглинок легк. тверд.
397		7,50	4					2,2	2,5	6,9	37,3	12,3	18,5	20,3			19,02			_		0,611							3 0,85 Суглинок песчанист. тяжел. полутверд.
398		8,50	4														18,20	_	_			0,600			32,95	17,45	15,50	0,05	5 0,83 Суглинок тяжел. полутверд.
419		10,00					-								4,76							0,520							0,38 Песок ср.крупн. плотн. неоднород. малой степени водона
420		12,00			1,1	2,3	-				-				4,65						_	0,505							0,37 Песок ср.крупн. плотн. неоднород. малой степени водона
456		15,00			0,5	2,3									3,18							0,522							0,40 Песок мелкий плотн. неоднород. малой степени водонас.
457		18,00	7			2,3									3,44	2,67	_	_	1,75			0,527							0,44 Песок мелкий плотн. неоднород. малой степени водонас.
458		20,00	7			1,2	2,3		35,3		-		_	_			9,20												Песок мелкий неоднород.
459	11	22,00	7			2,3	3,6	5,2	36,3	42,2	10,4				3,07		9,11												Песок мелкий неоднород.
261		3,00	3					4,3	12,0	28,4	37,8	3,8	4,1	9,6			12,34	_	_			0,543							6 0,62 Суглинок песчанист. легк. тверд. среднедеформ.
262	12	3,20	3													2,71	12,82	2,07	1,83			0,477			21,81	12,90	8,91	-0,01	1 0,73 Суглинок легк. тверд. среднедеформ.
263			3														12,94	_	_			0,493							5 0,71 Суглинок легк. тверд. среднедеформ.
264	12	6,00	4													2,72	16,72	2,01	1,72			0,579			27,45	14,53	12,92	0,17	7 0,78 Суглинок тяжел. полутверд. среднедеформ.
265		6,30	4														16,87	_	_			0,551			28,21	16,13	12,08	0,06	6 0,83 Суглинок тяжел. полутверд. среднедеформ.
266		6,60	4														17,20					0,540			27,32	15,91	11,41	0,11	1 0,87 Суглинок легк. полутверд. среднедеформ.
421		9,00	5		0,5	1,2	_								4,93						_	0,520							0,44 Песок ср.крупн. плотн. неоднород. малой степени водона
422		11,00				2,2	-				-				4,42							0,512							0,39 Песок ср.крупн. плотн. неоднород. малой степени водона
460		13,00				1,1							_	_	2,92							0,529							0,42 Песок мелкий плотн. однород. малой степени водонас.
461		15,00													3,38				1,76			0,519							0,36 Песок мелкий плотн. неоднород. малой степени водонас.
462	12	17,00	7												3,40		7,41												Песок мелкий неоднород.
463		20,00				1,5	5,2	2,5	35,3	43,3	12,2				3,10		8,23												Песок мелкий неоднород.
378		2,00															12,52	_				0,532			23,36	13,00	10,36	-0,05	5 0,64 Суглинок легк. тверд.
379		4,00															13,22					0,534			24,85	14,12	10,73	-0,08	8 0,67 Суглинок легк. тверд.
399		5,50															16,52					0,561							5 0,80 Суглинок тяжел. полутверд. незасол.
400		6,50														-	17,85		-			0,579			30,25	17,12	13,13	0,06	6 0,84 Суглинок тяжел. полутверд.
423		9,00				3,3									4,26							0,518							0,46 Песок ср.крупн. плотн. неоднород. малой степени водона
424		11,00				_	_		_	_	_		_		5,01		_	_	_			0,519							0,41 Песок ср.крупн. плотн. неоднород. малой степени водона
464		13,20								-			-		3,42		-					0,518							0,41 Песок мелкий плотн. неоднород. малой степени водонас.
465		15,00			1,1										3,18	2,67			1,75			0,525							0,46 Песок мелкий плотн. неоднород. малой степени водонас.
466		18,00				2,2									3,52		7,87												Песок мелкий неоднород.
467		20,00				1,1	-		38,8		-						8,01												Песок мелкий неоднород.
468		23,00				1,2	3,3	6,0	38,5	39,0	12,0				3,36		7,95												Песок мелкий неоднород.
-		2,00															12,77					0,543	_						5 0,64 Суглинок легк. тверд. незасол.
381	14	4,00	3													2,71	13,63	2,01	1,77			0,532			25,02	14,55	10,47	-0,09	9 0,69 Суглинок легк. тверд.

			86-05-20182.6	4
				4

$-\infty$
_∵
_

							C	элоруу	211140 1	настиц	%									сухого	o Ko:	эф. пој	рис-					
		I, M					C	одерж	ание	1аСТИЦ	, 70	1			CTZ	нта	%	і гр	унта,	г/см ³		тости		-de	rp.			
Лаб. № пробы	$ m N^{2}$ выработки	Глубина отбора пробы, м	ели ⁰и	свыше 10 мм	10 - 5 мм	5 - 2 mm	2 - 1 мм	1 - 0,5 MM	0,5 - 0,25 мм	0,25 - 0,10 мм	0,10 - 0,05 мм	0,05 - 0,01 мм	0,01 - 0,005 мм	меньше 0,005 мм	Степень неоднородности грансостава	Плотность частиц грунта, Γ	Влажность природная, %	Плотность грунта прир. сложения, г/см³ природного сложе-	в макс. рыхлом со-	в макс. плотном со-	природного сложе- ния	в макс. рыхлом со- стоянии	в макс. плотном со- стоянии	Влажность на гр. текуче- сти, %	Влажность на гр. раскатывания %	Число пластичности	Показатель текучести	Жина Наименование грунта по ГОСТ 25100-2011 Ф созоробо об состоя
				10	5	2	1	0,5	0,25	0,1	0,05	0,01	0,005	0,001	Cu	ρ_{s}	W			ρ _{d,max}		e _{max}	e _{min}	W_{L}	-		I_L	S _r
401		6,00	4														_	2,02 1,71	_		0,589			31,02	17,4	5 13,5	7 0,04	0,83 Суглинок тяжел. полутверд. среднедеформ.
402		7,00	4															2,02 1,71			0,588			31,20	17,2	2 13,98	8 0,05	6 0,83 Суглинок тяжел. полутверд.
267		9,00	5			0,5	_							_	4,31													Песок ср.крупн. неоднород.
268		11,50				0,4	_								5,57	2,66												Песок ср.крупн. неоднород.
269		13,00				0,3		-							2,95		9,33											Песок мелкий однород.
270		13,50				0,1	0,9	4,5	32,7	46,4	15,4				2,96		10,07											Песок мелкий однород.
431		14,00														2,72	15,98							30,25	15,5	3 14,72	2 0,03	Суглинок тяжел. полутверд.
271		15,50					0,0	5,8	26,4	45,2	22,6				3,11		7,40											Песок мелкий неоднород.
432		16,00														2,72	16,02							31,11	15,5	5 15,50	6 0,03	Суглинок тяжел. полутверд.
272		18,00	7			1,6	6,9	5,6	29,7	42,9	13,3				3,22		6,54											Песок мелкий неоднород.
382		4,00	3														_	2,01 1,74	_		0,553							7 0,75 Суглинок легк. тверд.
383		5,00	3															2,02 1,74			0,558							5 0,78 Суглинок легк. тверд.
403		7,00	4														18,22							29,52	18,0	2 11,50	0,02	Суглинок легк. полутверд.
425	15	8,50	5			2,1									4,44													Песок ср.крупн. неоднород.
426	15	10,50	5			1,2									4,72	2,66	6,98											Песок ср.крупн. неоднород.
250		16,00	7			0,3		1						1	2,15		7,35											Песок мелкий однород.
251		22,00	7				_							_	2,35		8,05											Песок мелкий однород.
252		23,00													2,04		9,85											Песок мелкий однород.
253	15	24,00	7				0,8	2,1	14,2	59,4	23,5				2,70		9,14											Песок мелкий однород.
254	16	4,00	3					4,6	12,1	28,6	38,0	4,3	4,3	8,1		2,72	13,15							27,25	13,89	9 13,30	6 -0,06	б Суглинок песчанист. тяжел. тверд.
255	16	5,00	4					3,2	8,2	20,1	36,7	7,6	8,7	15,5		2,72	19,28							31,40	16,00	6 15,3	4 0,21	Суглинок песчанист. тяжел. полутверд. незасол.
256	16	6,00	4							20,2							20,06							34,78	18,39	9 16,39	9 0,10	Суглинок песчанист. тяжел. полутверд.
257	16	8,50	5												4,30													Песок ср.крупн. неоднород. незасол.
258	16	10,00	5			5,2	17,6	23,5	21,8	9,0	22,9				8,83	2,66	7,65											Песок ср.крупн. неоднород.
259	16	11,00	5			2,7	6,1	17,1	37,3	23,0	13,8				4,70	2,66	8,49											Песок ср.крупн. неоднород.
260	16	12,00	7			3,9	1,7	2,1	28,9	44,0	19,4				3,15		7,43											Песок мелкий неоднород. незасол.
469	16	13,00	7		1,1	1,2	2,0	3,6	28,5	45,5	18,1				3,07	2,67	7,96	1,90 1,76			0,517							0,41 Песок мелкий плотн. неоднород. малой степени водонас.
470	16	15,00	7		1,0	2,0	1,5	2,5	36,3	38,0	18,7				3,55	2,67	8,20	1,89 1,75			0,529							0,41 Песок мелкий плотн. неоднород. малой степени водонас.
471	16	20,00	7			1,0	2,2	3,5	38,5	39,0	15,8				3,48	2,67	9,11	1,90 1,74			0,533							0,46 Песок мелкий плотн. неоднород. малой степени водонас.

							Природ	цное со	стояние	грунта					Вод	донасыі	ценное	состоян	ние грун	та			
		пробы,			22	сти			/ль де- орм	трения	ение	трения	ение		[3	Моду фо		трения	ение	трения	ение	г. с уче-	
Лаб. Nº пробы	№ выработки	Глубина отбора м	€ЛИ ₅N	Влажность, %	Плотность, г/см ³	Коэф-т пористости	Коэф-т водонасыщения	0,0 - 0,3 МПа	0,1 – 0,2 МПа	Угол внутр. тре (КОНС)	Удельное сцепление (KOHC)	Угол внутр. тре (НЕКОНС)	Удельное сцепле (НЕКОНС)	Влажность, %	Плотность, г/см ³	0,0 – 0,3 МПа	0,1 – 0,2 МПа	Угол внутр. тре (КОНС)	Удельное сцепление (КОНС)	Угол внутр. тре (НЕКОНС)	Удельное сцепление (НЕКОНС)	Модуль деформ. том Мк, МПа	Наименование грунта по ГОСТ 25100-2011
				W	ρ	e	S_{r}	E_{03}	E ₁₂	φ		φ		$W_{\rm w}$	ρ_{w}	E _{03,w}	$E_{12,w}$	φ		φ		E_{mk}	
361	1	4,00	3	13,02	2,02	0,516	0,68	4,00	5,2174					19,05	2,13	3,53	4,62					26,1	Суглинок легк. тверд. среднедеформ.
362	1	6,00	3	12,95	2,00	0,536	0,66							19,71	2,12			21,31	36,67				Суглинок песчанист. легк. тверд.
384	1	8,70	4	15,85	2,01	0,568	0,76	4,09	4,6154					20,87	2,10	3,60	4,00					22,7	Суглинок тяжел. полутверд. среднедеформ.
385	1	9,20	4	16,63	2,02	0,570	0,79							20,97	2,10								Суглинок тяжел. полутверд.
404	1	11,00	5	7,52																			Песок ср.крупн. неоднород.
427	1	12,20	6	16,23	2,08	0,520	0,85	4,29	5,7143					19,12	2,13	3,75	4,62					28,6	Суглинок тяжел. полутверд. среднедеформ.
405	1	13,50	5	6,85	1,86	0,528	0,35							19,85	2,09								Песок ср.крупн. плотн. неоднород. малой степени водонас.
406	1	14,00	5	7,02	1,85	0,539	0,35							20,25	2,08								Песок ср.крупн. плотн. неоднород. малой степени водонас.
283	1	14,50	6	15,48	2,07	0,517	0,81							19,02	2,13								Суглинок тяжел. полутверд.
284	1	15,00	6	15,13	2,08	0,506	0,81							18,59	2,14			21,80	37,67				Суглинок тяжел. полутверд.
444	1	20,00	7	5,95	1,85	0,529	0,30							19,82	2,09								Песок мелкий плотн. однород. малой степени водонас.
445	1	22,00	7	6,20	1,86	0,524	0,32							19,64	2,10								Песок мелкий плотн. однород. малой степени водонас.
446	1	24,00	7	5,95	1,84	0,537	0,30							20,13	2,09								Песок мелкий плотн. однород. малой степени водонас.
233	2	4,20	3	14,98	2,03	0,535	0,76	3,60	4,918					19,74	2,11	3,27	4,62					24,6	Суглинок песчанист. легк. тверд. среднедеформ.
234	2	5,50	3	13,28	2,02	0,525	0,69							19,31	2,13								Суглинок песчанист. тяжел. полутверд.
235	2	8,50	4	16,42	2,02	0,568	0,79							20,87	2,10			22,29	25,33				Суглинок тяжел. полутверд.
407	2	10,50	5	8,02	1,86	0,545	0,39							20,48	2,07								Песок ср.крупн. плотн. неоднород. малой степени водонас.
236	2	11,30	6	17,67	2,06	0,554	0,87	4,09	5,4545					20,36	2,11	3,60	5,00					27,2	Суглинок тяжел. полутверд. среднедеформ.
237	2	11,50	6	18,22	2,07	0,553	0,90							20,35	2,11								Суглинок тяжел. полутверд.
238	2	13,00	5	8,62	1,87	0,545	0,42							20,49	2,07								Песок ср.крупн. плотн. неоднород. малой степени водонас.
239	2	14,20	6	15,86	2,09	0,508	0,85							18,67	2,14								Суглинок тяжел. полутверд.
240	2	14,50	6	15,84	2,08	0,515	0,84							18,93	2,14								Суглинок тяжел. полутверд.
241	2	17,00	6	18,01	2,07	0,551	0,89	4,00	6,0					20,24	2,11	3,60	5,00					30,0	Суглинок тяжел. полутверд. среднедеформ.
242	2	17,50	6	18,17	2,09	0,538	0,92							19,78	2,12			22,29	38,33				Суглинок тяжел. полутверд.
243	2	20,00	6	17,08	2,10	0,516	0,90							18,99	2,13			21,55	40,67				Суглинок тяжел. полутверд.
244	2	20,50	6	17,48	2,08	0,536	0,89							19,72	2,12								Суглинок тяжел. полутверд.
363	3	5,00	3	13,66																			Суглинок легк. тверд.
386	3	8,00	4	16,63																			Суглинок тяжел. полутверд.
387	3	8,50	4	17,12																			Суглинок тяжел. полутверд.
408	3	10,50	5	6,96																			Песок ср.крупн. неоднород.
409	3	12,00	5	8,22																			Песок ср.крупн. неоднород.
428	3	15,00	6	16,85																			Суглинок тяжел. полутверд.
429	3	17,50	6	17,12																			Суглинок тяжел. полутверд.
430	3	20,00	6	18,22																			Суглинок тяжел. полутверд.

Изм	Кол уч	Лист	№ док	Подп	Дата	86-05-2018-ИГИ	I-2.7		
	лаб.	Ланина		1041	05.18	Ведомость результатов анализа	Стадия ПР	Лист	Листов
						механических свойств грунтов		ексная исп лаборатор ОО «Верти	

Topodin Property	W 13,02 12,28 14,10 13,69 14,12 15,63 7,85	1,86 1,89 1,88 1,90	e 0,599 0,606 0,606	жор водонасьщения	туль де- форм В Е ₁₂	⇒ Угол внутр. трения (КОНС)	Удельное сцепление (КОНС)	е Угол внутр. трения (НЕКОНС)	Удельное сцепление (НЕКОНС)	% °qгоон W _w 22,52 22,77 22,78	ρ _w 2,04 2,03	Моду. фој вШи 2°0 - 0°0 E _{03,w}		⇒ Угол внутр. трения (КОНС)	Удельное сцепление (КОНС)	⇒ Угол внутр. трения (НЕКОНС)	Удельное сцепление (НЕКОНС)	д Модуль деформ. с учетом Мк, МПа	Наименование грунта по ГОСТ 25100-2011 Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
Section Sect	W 13,02 12,28 14,10 13,69 14,12 15,63 7,85 6 8,02 7,02 8,20	р 1,88 1,86 1,89 1,88 1,90	е 0,599 0,606 0,606 0,609	жоран Бодонасрийения	0,1 – 0,2 МПа	Угол внутр. (КОНС)	епл	Угол внутр. (НЕКОНС)	Удельное сцеплени (НЕКОНС)	W _w 22,52 22,77	ρ _w 2,04 2,03	0,0 – 0,3 МПа	0,1 – 0,2 МПа	Угол внутр. (КОНС)	Удельное сцеплени (КОНС)	Угол внутр. (НЕКОНС)	Удельное сцеплени (НЕКОНС)	Модуль деформ. с Мк, МПа	по ГОСТ 25100-2011
See See	W 13,02 12,28 14,10 13,69 14,12 15,63 7,85 6 8,02 7,02 8,20	р 1,88 1,86 1,89 1,88 1,90	е 0,599 0,606 0,606 0,609	S _r E ₀₃ 0,58 0,54 0,62 0,60	0,1 - 0,2	Угол внутр. (КОНС)	епл	Угол внутр. (НЕКОНС)	Удельное сцепл (НЕКОНС)	W _w 22,52 22,77	ρ _w 2,04 2,03	0,0 - 0,3	0,1 - 0,2	Угол внутр. (КОНС)	Удельное сцепл (КОНС)	Угол внутр. (НЕКОНС)	Удельное сцепл (НЕКОНС)		по ГОСТ 25100-2011
See See	W 13,02 12,28 14,10 13,69 14,12 15,63 7,85 6 8,02 7,02 8,20	р 1,88 1,86 1,89 1,88 1,90	е 0,599 0,606 0,606 0,609	S _r E ₀₃ 0,58 0,54 0,62 0,60	0,1 - 0,2		Удельное сп (КОНС)	Угол (НЕК	Удельное си (НЕКОНС)	W _w 22,52 22,77	ρ _w 2,04 2,03	0,0 - 0,3	0,1 - 0,2		Удельное си (КОНС)	Угол вну (НЕКОН	Удельное сп (НЕКОНС)		
See See	W 13,02 12,28 14,10 13,69 14,12 15,63 7,85 8,02 7,02 8,20	ρ 1,88 1,86 1,89 1,88 1,90	е 0,599 0,606 0,606 0,609	S _r E ₀₃ 0,58 0,54 0,62 0,60	0,1 - 0,2		Удельно (КОНС)	Угол (НЕК	Удельно (НЕКОН	W _w 22,52 22,77	ρ _w 2,04 2,03	0,0 - 0,3	0,1 - 0,2		Удельно (КОНС)		Удельно (НЕКОН		Песок ср.крупн. ср.плотн. неолнорол. ср. степени волонас.
SE SE SE 350 4 1,80 2 351 4 2,00 2 352 4 2,20 2 353 4 2,50 2 354 4 3,00 2 356 4 5,00 2 364 4 7,50 3 388 4 9,00 4 410 4 10,20 5 411 4 12,00 5 447 4 20,00 7 448 4 22,00 7 449 4 24,00 7 365 5 5,50 3 389 5 7,20 4 390 5 8,00 4	W 13,02 12,28 14,10 13,69 14,12 15,63 7,85 8,02 7,02 8,20	ρ 1,88 1,86 1,89 1,88 1,90	e 0,599 0,606 0,606 0,609	S _r E ₀₃ 0,58 0,54 0,62 0,60	0,1 -		Удел (КОН	Угол (НЕК	Удел (НЕК	W _w 22,52 22,77	ρ _w 2,04 2,03	- 0,0	0,1 -		Удел (КОН		Удел (НЕК		Песок ср.крупн. ср.плотн. неолнорол. ср. степени волонас.
350 4 1,80 2 351 4 2,00 2 352 4 2,20 2 353 4 2,50 2 354 4 3,00 2 355 4 4,00 2 364 4 7,50 3 388 4 9,00 4 410 4 10,20 5 411 4 12,00 5 447 4 20,00 7 448 4 22,00 7 449 4 24,00 7 365 5 5,50 3 389 5 7,20 4 390 5 8,00 4	W 13,02 12,28 14,10 13,69 14,12 15,63 7,85 8,02 7,02 8,20	ρ 1,88 1,86 1,89 1,88 1,90	e 0,599 0,606 0,606 0,609	S _r E ₀₃ 0,58 0,54 0,62 0,60			, A)		Y (1)	W _w 22,52 22,77	ρ _w 2,04 2,03				X, X)		Y. (F.		Песок ср.крупн. ср.плотн. неолнорол. ср. степени волонас.
351 4 2,00 2 352 4 2,20 2 353 4 2,50 2 354 4 3,00 2 355 4 4,00 2 356 4 5,00 2 364 4 7,50 3 388 4 9,00 4 410 4 10,20 5 411 4 12,00 5 447 4 20,00 7 448 4 22,00 7 449 4 24,00 7 365 5 5,50 3 389 5 7,20 4 390 5 8,00 4	13,02 12,28 14,10 13,69 14,12 15,02 15,63 7,85 6 8,02 7,02 8,20	1,88 1,86 1,89 1,88 1,90	0,599 0,606 0,606 0,609	0,58 0,54 0,62 0,60	E ₁₂	φ		φ		22,52 22,77	2,04 2,03	E _{03,w}	E _{12,w}	φ		φ		E_{mk}	Песок ср.крупн, ср.плотн, неолнорол, ср. степени волонас.
351 4 2,00 2 352 4 2,20 2 353 4 2,50 2 354 4 3,00 2 355 4 4,00 2 356 4 5,00 2 364 4 7,50 3 388 4 9,00 4 410 4 10,20 5 411 4 12,00 5 447 4 20,00 7 448 4 22,00 7 449 4 24,00 7 365 5 5,50 3 389 5 7,20 4 390 5 8,00 4	12,28 14,10 13,69 14,12 15,02 15,63 7,85 8,02 7,02 8,20	1,86 1,89 1,88 1,90	0,606 0,606 0,609	0,54 0,62 0,60						22,77	2,03								Песок ср.крупн, ср.плотн, неолнорол, ср. степени волонас.
352 4 2,20 2 353 4 2,50 2 354 4 3,00 2 355 4 4,00 2 356 4 5,00 2 364 4 7,50 3 388 4 9,00 4 410 4 10,20 5 411 4 12,00 5 447 4 20,00 7 448 4 22,00 7 449 4 24,00 7 365 5 5,50 3 366 5 5,50 3 389 5 7,20 4 390 5 8,00 4	14,10 13,69 14,12 15,02 15,63 7,85 6 8,02 7,02 8,20	1,89 1,88 1,90	0,606 0,609	0,62 0,60															
353 4 2,50 2 354 4 3,00 2 355 4 4,00 2 356 4 5,00 2 364 4 7,50 3 388 4 9,00 4 410 4 10,20 5 411 4 12,00 5 447 4 20,00 7 448 4 22,00 7 449 4 24,00 7 365 5 5,50 3 389 5 7,20 4 390 5 8,00 4	13,69 14,12 15,02 15,03 15,63 7,85 8,02 7,02 8,20	1,88 1,90	0,609	0,60						44.10	2.07								Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
354 4 3,00 2 355 4 4,00 2 356 4 5,00 2 364 4 7,50 3 388 4 9,00 4 410 4 10,20 5 411 4 12,00 5 447 4 20,00 7 448 4 22,00 7 449 4 24,00 7 365 5 5,50 3 366 5 5,50 3 389 5 7,20 4 390 5 8,00 4	14,12 15,02 15,63 7,85 8,02 7,702 8,20	1,90		-							2,03								Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
355 4 4,00 2 356 4 5,00 2 364 4 7,50 3 388 4 9,00 4 410 4 10,20 5 411 4 12,00 5 447 4 20,00 7 448 4 22,00 7 449 4 24,00 7 365 5 5,50 3 366 5 5,50 3 389 5 7,20 4 390 5 8,00 4	15,02 15,63 7,85 8,02 7,02 8,20		0,598	0,63						22,88	2,03								Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
356 4 5,00 2 364 4 7,50 3 388 4 9,00 4 410 4 10,20 5 411 4 12,00 5 447 4 20,00 7 448 4 22,00 7 449 4 24,00 7 365 5 5,00 3 366 5 5,50 3 389 5 7,20 4 390 5 8,00 4	15,02 15,63 7,85 8,02 7,702 8,20	_								22,47	2,04								Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
364 4 7,50 3 388 4 9,00 4 410 4 10,20 5 411 4 12,00 5 447 4 20,00 7 448 4 22,00 7 449 4 24,00 7 365 5 5,00 3 366 5 5,50 3 389 5 7,20 4 390 5 8,00 4	15,02 15,63 7,85 8,02 7,02 8,20	_																	Песок ср.крупн. неоднород.
388 4 9,00 4 410 4 10,20 5 411 4 12,00 5 447 4 20,00 7 448 4 22,00 7 449 4 24,00 7 365 5 5,00 3 366 5 5,50 3 389 5 7,20 4 390 5 8,00 4	15,63 7,85 8,02 7,02 8,20	_																	Песок ср.крупн. неоднород.
410 4 10,20 5 411 4 12,00 5 447 4 20,00 7 448 4 22,00 7 449 4 24,00 7 365 5 5,00 3 366 5 5,50 3 389 5 7,20 4 390 5 8,00 4	7,85 8,02 7,02 8,20																		Суглинок легк. тверд.
411 4 12,00 5 447 4 20,00 7 448 4 22,00 7 449 4 24,00 7 365 5 5,00 3 366 5 5,50 3 389 5 7,20 4 390 5 8,00 4	8,02 7,02 8,20																		Суглинок тяжел. полутверд.
447 4 20,00 7 448 4 22,00 7 449 4 24,00 7 365 5 5,00 3 366 5 5,50 3 389 5 7,20 4 390 5 8,00 4	7,02 8,20																		Песок ср.крупн. неоднород.
448 4 22,00 7 449 4 24,00 7 365 5 5,00 3 366 5 5,50 3 389 5 7,20 4 390 5 8,00 4	8,20																		Песок ср.крупн. неоднород.
449 4 24,00 7 365 5 5,00 3 366 5 5,50 3 389 5 7,20 4 390 5 8,00 4																			Песок мелкий однород.
365 5 5,00 3 366 5 5,50 3 389 5 7,20 4 390 5 8,00 4	9 02																		Песок мелкий однород.
366 5 5,50 3 389 5 7,20 4 390 5 8,00 4	7,02																		Песок мелкий однород.
389 5 7,20 4 390 5 8,00 4	14,45	2,01	0,543	0,72						20,04	2,11			20,56	38,67				Суглинок легк. тверд.
390 5 8,00 4	14,47	2,02	0,536	0,73						19,77	2,11								Суглинок легк. тверд.
	16,23	2,03	0,557	0,79 3,8	3 4,6154	1				20,49	2,10	3,46	4,29					22,9	Суглинок тяжел. полутверд. среднедеформ.
412 5 9.40 5	18,20	2,03	0,584	0,85						21,46	2,09			21,55	29,33				Суглинок тяжел. полутверд.
	7,48	1,87	0,529	0,38						19,88	2,09								Песок ср.крупн. плотн. неоднород. малой степени водонас.
413 5 12,50 5	8,25	1,87	0,540	0,41						20,29	2,08								Песок ср.крупн. плотн. неоднород. малой степени водонас.
433 5 14,00 6	15,95	2,08	0,516	0,84 3,8	5,6764	1				18,98	2,13	3,40	5,00					28,4	Суглинок тяжел. полутверд. среднедеформ.
434 5 16,50 6	16,65	2,09	0,518	0,87 4,5	5,8824	1				19,05	2,13	4,00	5,00						Суглинок тяжел. полутверд. среднедеформ.
435 5 20,10 6	17,12	2,09	0,524	0,89						19,27	2,13			21,80	34,67				Суглинок тяжел. полутверд.
436 5 23,00 6	18,01	2,08	0,543	0,90						19,97	2,11			20,81	43,33				Суглинок тяжел. полутверд.
367 6 3,50 3	13,69																		Суглинок легк. тверд.
368 6 4,20 3	15,25																		Суглинок легк. тверд.
391 6 6,10 4																			Суглинок тяжел. полутверд.
392 6 7,40 4	18,22																		Суглинок тяжел. полутверд.
273 6 8,50 5	-		0,535	0,62						20,11	2,08								Песок ср.крупн. плотн. неоднород. ср. степени водонас.
274 6 10,00 5			0,539							20,25	2,08								Песок ср.крупн. плотн. неоднород. ср. степени водонас.
437 6 14,30 6	-		-	-						,	,								Суглинок тяжел. полутверд.
438 6 15,50 6																			Суглинок тяжел. полутверд.
275 6 17,50 7	4,61																		Песок мелкий неоднород.
276 6 20,50 7	12,92																		Песок мелкий однород.
277 6 24,00 7																			Песок мелкий неоднород.
393 7 6,00 4	10.55	_	0,589	0.81						21,67	2,08								Суглинок тяжел. полутверд.
394 7 8,00 4	10,55		0,595							21,88	2,08			21,80	26.67				Суглинок тяжел. полутверд.

			86-05-20182.7	

		M					Природ	цное со	стояни	грунта	<u> </u>				Вод	онасыг	ценное	состоян	ние груг	нта			
		5ы,						Моду	ль де-							Моду	ль де-					уче-	
)odii				Ти		-	рм	ВИЗ	ние	ВИЗ	ние			фо		ИИ	ние	ВИЗ	ние	L)	
15	_	отбора пробы,		\o	Γ/CM^3	пористости	Коэф-т водонасыщения		-	трения	сцепление	трения	Удельное сцепление (НЕКОНС)	vo	r/cm ³	-	_	трения	сцепление	трения	сцепление:	Модуль деформ. том Мк, МПа	Наименование грунта
пробы	выработки)T6c		ъ, %	ь, г/	рис	щег	МПа	МПа		СЦЕ	ģ. (i)	сце	ъ, %	ь, г/	МПа	МПа	.p. 1	СЦе		CITE (ефо ЛПа	по ГОСТ 25100-2011
P III	ago	нас	ტ	Влажность,	Плотность,	г пс	т асы	0,3 1	0,2 N	внутр. IC)	Удельное ((КОНС)	HYJ OHC	НОС	Влажность,	Плотность,	0,3 N	0,2 N	HY ()	Удельное (КОНС)	HY OHC	Удельное с (НЕКОНС)	Б. Л. К, Л	
6. Nº	выр	Глубина	ИГ	ажн	ОТН	Коэф-	-фе тон	I	I	Угол вну (КОНС)	ель ОН(OJI E	ель ЕКС	ажн	ОТН	I	- 1)HC	ель ОНС	OJI E	ель ЕКС	Ϋ́ X	
Лаб.	Ž	5	Ž	Вл	Пл	Ko	Ковод	0,0	0,1	X X	ξ Σ	Угол внутр. (НЕКОНС)	Υ _H	Вл	П	0,0	0,1	Угол внутр. (КОНС)	Υ _Z X	Угол внутр. (НЕКОНС)	Υ H	M or	
				W	ρ	e	S _r	E_{03}	E ₁₂	φ		φ		$W_{\rm w}$	ρ_{w}	E _{03,w}	E _{12,w}	φ		φ		E _{mk}	
414	7	9,40	5	13,52	1,96	0,541	0,67							20,32	2,08								Песок ср.крупн. плотн. неоднород. ср. степени водонас.
415	7	12,10	5	14,21	1,97	0,542	0,70							20,38	2,08								Песок ср.крупн. плотн. неоднород. ср. степени водонас.
439	7	13,60	6	16,65																			Суглинок тяжел. полутверд.
440	7	15,00	6	17,11																			Суглинок тяжел. полутверд.
450	7	17,40	7	7,51																			Песок мелкий неоднород.
451	7	20,00	7	7,95																			Песок мелкий однород.
452	7	23,00	7	8,52																			Песок мелкий неоднород.
357	8	1,70	2	12,89	1,87	0,606	0,57							22,77	2,03								Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас. незасол.
358	8	2,00	2	13,02	1,89	0,591	0,59							22,20	2,04								Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
359	8	2,30	2	14,22	1,90	0,599	0,63							22,52	2,04								Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
278	8	2,50	2	13,50	1,91	0,581	0,62							21,83	2,05								Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
360	8	2,70	2	15,02	1,85	0,654	0,61							24,58	2,00								Песок ср.крупн. ср.плотн. неоднород. ср. степени водонас.
369	8	4,00	3	12,95																			Суглинок легк. тверд.
370	8	5,10	3	15,55																			Суглинок легк. тверд.
395	8	7,70	4	16,25																			Суглинок тяжел. полутверд.
279	8	9,60	5	14,65																			Песок ср.крупн. неоднород.
441	8	14,00	6	18,22																			Суглинок тяжел. полутверд.
453	8	18,00	7	7,84																			Песок мелкий неоднород.
454	8	20,50	7	8,63																			Песок мелкий неоднород.
371	9	2,50	3	14,78	2,02	0,540	0,74							19,92	2,11			21,31	34,67				Суглинок легк. тверд.
372	9	4,00	3	14,95	2,03	0,535	0,76							19,73	2,11								Суглинок легк. тверд.
245	9	5,20	4	16,98																			Суглинок песчанист. тяжел. полутверд.
246	9	5,50	4	17,51																			Суглинок песчанист. тяжел. полутверд.
416	9	9,00	5	13,25	1,95	0,545	0,65							20,48	2,07								Песок ср.крупн. плотн. неоднород. ср. степени водонас.
247	9	12,00	5	14,43	1,98	0,537	0,71							20,20	2,08								Песок ср.крупн. плотн. неоднород. ср. степени водонас.
248	9	14,50	6	17,92	2,10	0,527	0,92	4,09	5,4545					19,39	2,13	3,67	5,00					27,3	Суглинок тяжел. полутверд. среднедеформ.
442	9	15,50	6	18,02	2,09	0,536	0,91							19,70	2,12			21,80	40,00				Суглинок тяжел. полутверд.
455	9	19,00	7	8,21	1,89	0,529	0,41							19,80	2,09								Песок мелкий плотн. неоднород. малой степени водонас.
249	9	24,00	7	9,82	1,88	0,560	0,47							20,96	2,07								Песок мелкий плотн. неоднород. малой степени водонас.
373	10	4,00	3	15,52	2,02	0,550	0,76	3,67	5,2174					20,29	2,10	3,33	4,29					26,1	Суглинок песчанист. легк. тверд. среднедеформ.
374	10	5,50	3	16,02	2,02	0,557	0,78							20,54	2,10								Суглинок легк. тверд.
396	10	7,00	4	17,12	2,02	0,577	0,81							21,22	2,09								Суглинок песчанист. тяжел. полутверд.
417	10	9,00	5	12,85	1,96	0,532	0,64							19,98	2,08								Песок ср.крупн. плотн. неоднород. ср. степени водонас.
418	10	11,00	5	13,36	1,96	0,538	0,66							20,24	2,08								Песок ср.крупн. плотн. неоднород. ср. степени водонас.
443	10	13,00	6	16,95																			Суглинок тяжел. полутверд.

86-05-20182.7				

Лаб. № пробы Nº выработки	OTKM	Глубина отбора пробы, м	Φ.	ь, %	r/cm³	ти		Модул	ль де-							1		1				ī do	į
Лаб. № пробы	N* выраюотки	пубина	Φ.	1	2		_	фој	рм	трения	ение	трения	ение		13	Моду фо		трения	іение	трения	сцепление)	г. с уче-	
		ĽΣ	∾ ИГЭ	Влажность,	Плотность, г/с	Коэф-т пористости	Коэф-т водонасыщения	0,0 – 0,3 МПа	0,1 - 0,2 МПа	Угол внутр. тре (КОНС)	Удельное сцепление (KOHC)	Угол внутр. тре (НЕКОНС)	Удельное сцепление (НЕКОНС)	Влажность, %	Плотность, г/см ³	0,0 – 0,3 МПа	0,1 - 0,2 МПа	Угол внутр. тре (КОНС)	Удельное сцепление (KOHC)	Угол внутр. тре (НЕКОНС)	Удельное сцепл (НЕКОНС)	Модуль деформ. с том Мк, МПа	Наименование грунта по ГОСТ 25100-2011
				W	ρ	e	S_{r}	E ₀₃	E ₁₂	φ		φ		$W_{\rm w}$	$\rho_{\rm w}$	E _{03,w}	$E_{12,w}$	φ		φ		E _{mk}	
280 10	0 1	14,70	7	7,51																			Песок мелкий однород.
281 10	0 1	17,00	7	8,93																			Песок мелкий неоднород.
282 10	0 1	17,60	7	8,50																			Песок мелкий однород.
375 11	1	1,50	3	15,50	2,01	0,557	0,75							20,56	2,10			22,29	33,33				Суглинок легк. тверд.
376 11	1	3,00	3	14,89	1,99	0,565	0,71							20,83	2,09								Суглинок песчанист. легк. тверд.
377 11	.1	5,00	3	16,21	2,02	0,559	0,79							20,63	2,10								Суглинок легк. тверд.
397 11	.1	7,50	4	19,02	2,01	0,611	0,85							22,45	2,07								Суглинок песчанист. тяжел. полутверд.
398 11	1	8,50	4	18,20	2,01	0,600	0,83							22,04	2,08			22,05	31,33				Суглинок тяжел. полутверд.
419 11	1 1	10,00	5	7,45	1,88	0,520	0,38							19,56	2,09								Песок ср.крупн. плотн. неоднород. малой степени водонас.
420 11	1 1	12,00	5	6,96	1,89	0,505	0,37							19,00	2,10								Песок ср.крупн. плотн. неоднород. малой степени водонас.
456 11	1 1	15,00	7	7,77	1,89	0,522	0,40							19,57	2,10								Песок мелкий плотн. неоднород. малой степени водонас.
457 11	1 1	18,00	7	8,63	1,90	0,527	0,44							19,72	2,09								Песок мелкий плотн. неоднород. малой степени водонас.
458 11	1 2	20,00	7	9,20																			Песок мелкий неоднород.
459 11	1 2	22,00	7	9,11																			Песок мелкий неоднород.
261 12	2	3,00	3	12,34	1,98	0,543	0,62	3,83	4,6154					19,97	2,11	3,40	4,29	21,06	35,33			23,1	Суглинок песчанист. легк. тверд. среднедеформ.
262 12	2	3,20	3	12,82	2,07	0,477	0,73	3,46	5,0					17,60	2,16	3,16	5,00					25,0	Суглинок легк. тверд. среднедеформ.
263 12	2	3,50	3	12,94	2,05	0,493	0,71	3,27	5,4545					18,19	2,15	2,95	5,00					27,3	Суглинок легк. тверд. среднедеформ.
264 12	2	6,00	4	16,72	2,01	0,579	0,78	3,40	4,2857					21,30	2,09	3,10	3,75					20,8	Суглинок тяжел. полутверд. среднедеформ.
265 12	2	6,30	4	16,87	2,05	0,551	0,83	4,50	4,6154					20,25	2,11	3,91	4,29	20,30	39,33				Суглинок тяжел. полутверд. среднедеформ.
266 12	2	6,60	4	17,20	2,07	0,540	0,87	4,50	4,4444					19,85	2,12	4,00	4,00					22,2	Суглинок легк. полутверд. среднедеформ.
421 12	2	9,00	5	8,55	1,90	0,520	0,44							19,54	2,09								Песок ср.крупн. плотн. неоднород. малой степени водонас.
422 12	2 1	11,00	5	7,41	1,89	0,512	0,39							19,24	2,10								Песок ср.крупн. плотн. неоднород. малой степени водонас.
460 12	2 1	13,00	7	8,25	1,89	0,529	0,42							19,82	2,09								Песок мелкий плотн. однород. малой степени водонас.
461 12		15,00	7			0,519								19,44									Песок мелкий плотн. неоднород. малой степени водонас.
462 12		17,00	7	7,41	-		-								-								Песок мелкий неоднород.
463 12		20,00	7	8,23																			Песок мелкий неоднород.
378 13		2,00	3		1,99	0,532	0,64							19,64	2,12								Суглинок легк. тверд.
379 13		4,00	3			0,534								19,71	2,11								Суглинок легк. тверд.
399 13		5,50	4			0,561								20,63	2,10								Суглинок тяжел. полутверд, незасол.
400 13		6,50	4			0,579								21,29	2,09			21,31	29,33				Суглинок тяжел. полутверд.
423 13		9,00	5	9,02	-	0,518	-							19,48	2,09				,				Песок ср.крупн. плотн. неоднород. малой степени водонас.
424 13		11,00	5	7,95		0,519								19,52	2,09								Песок ср.крупн. плотн. неоднород. малой степени водонас.
464 13		13,20	7			0,518								19,40	2,10								Песок мелкий плотн. неоднород. малой степени водонас.
465 13		15,00	7			0,525								19,67	2,09								Песок мелкий плотн. неоднород. малой степени водонас.

		M					Природ	цное сос	стояние	е грунта	1				Вод	цонасыі	ценное	состоян	ние груг	нта			
		пробы, м						1	ль де-							1	ль де-				-	-ah	
		про(Z		фо		ВИ	ние	ВИ	ние			фо		ВИ	ние	ВИ	ние	c y	
19	_	opa 1		%	r/cm³	пористости	ИИЯ			трения	сцепление	трения	Удельное сцепление (НЕКОНС)	%	r/cm ³			трения	сцепление	трения	сцепление ;)	ppM.	Наименование грунта
пробы	выработки	отбора			Ъ, Г/	Эрис	Коэф-т водонасыщения	МПа	МПа	L.ď	СЦЕ	1	СЦ(С		Ъ, Г,	0,3 МПа	МПа	гр.	СЦЕ		CITE	деформ. МПа	по ГОСТ 25100-2011
	Sago	на (Ф	10C1	IOCT	ТП	Тасы	0,3]	0,2]	C)	C Hoe	ЭНС	ЭНС	HOCT	IOCT),3 I	0,2]	C)	C)	ЭНС	ЭОНС	ль д [к, л	
Лаб. №	BbIJ	Глубина	КТИ	Влажность,	Плотность,	Коэф-	Коэф- водон	I	- 1	Угол внутр. (КОНС)	Удельное ((КОНС)	Угол внутр. (НЕКОНС)	тель ЕК(Влажность,	Плотность,		1	Угол внутр. (КОНС)	Удельное (КОНС)	Угол внутр. (НЕКОНС)	Удельное сі (НЕКОНС)	Модуль , том Мк,	
Ла	N	Гл	Ż	Вл	ſШ	Kc	Kc	0,0	0,1	Υ _I	(\mathbf{K},\mathbf{Y})	Y _I	Λ (H	Вл	Π̈́	0,0	0,1	K X	Υ _ν X	Y H)	Y, H)	M or	
				W	ρ	e	S _r	E ₀₃	E ₁₂	φ		φ		$W_{\rm w}$	ρ_{w}	E _{03,w}	E _{12,w}	φ		φ		E _{mk}	
466	13	18,00	7	7,87																			Песок мелкий неоднород.
467	13	20,00	7	8,01												-							Песок мелкий неоднород.
468	13	23,00	7	7,95												-							Песок мелкий неоднород.
380	14	2,00	3	12,77	1,98	0,543								20,05	2,11	-							Суглинок легк. тверд. незасол.
381	14	4,00	3	13,63	2,01	0,532	0,69							19,63	2,12								Суглинок легк. тверд.
401	14	6,00	4	18,02	2,02	0,589		3,75	5,0					21,66	2,08	3,33	4,29					24,0	Суглинок тяжел. полутверд. среднедеформ.
402	14	7,00	4	17,95	2,02	0,588	0,83							21,63	2,08								Суглинок тяжел. полутверд.
267	14	9,00	5	7,59																			Песок ср.крупн. неоднород.
268	14	11,50	5	7,07																			Песок ср.крупн. неоднород.
269	14	13,00	7	9,33																			Песок мелкий однород.
270	14	13,50	7	10,07																			Песок мелкий однород.
431	14	14,00	6	15,98																			Суглинок тяжел. полутверд.
271	14	15,50	7	7,40																			Песок мелкий неоднород.
432	14	16,00	6	16,02																			Суглинок тяжел. полутверд.
272	14	18,00	7	6,54																			Песок мелкий неоднород.
382	15	4,00	3	15,22		0,553								20,42	2,10			21,06	36,00				Суглинок легк. тверд.
383	15	5,00	3	16,11	2,02	0,558	0,78							20,58	2,10								Суглинок легк. тверд.
403	15	7,00	4	18,22																			Суглинок легк. полутверд.
425	15	8,50	5	7,02																			Песок ср.крупн. неоднород.
426	15	10,50	5	6,98																			Песок ср.крупн. неоднород.
250	15	16,00	7	7,35																			Песок мелкий однород.
251	15	22,00	7	8,05																			Песок мелкий однород.
252	15	23,00	7	9,85																			Песок мелкий однород.
253	15	24,00	7	9,14																			Песок мелкий однород.
254	16	4,00	3	13,15																			Суглинок песчанист. тяжел. тверд.
255	16	5,00	4	19,28																			Суглинок песчанист. тяжел. полутверд. незасол.
256	16	6,00	4	20,06																			Суглинок песчанист. тяжел. полутверд.
257	16	8,50	5	9,96																			Песок ср.крупн. неоднород. незасол.
258	16	10,00	5	7,65																			Песок ср.крупн. неоднород.
259	16	11,00	5	8,49																			Песок ср.крупн. неоднород.
260	16	12,00	7	7,43																			Песок мелкий неоднород. незасол.
469	16	13,00	7	7,96	1,90	0,517	0,41							19,37	2,10								Песок мелкий плотн. неоднород. малой степени водонас.
470	16	15,00	7	8,20	1,89	0,529	0,41							19,80	2,09								Песок мелкий плотн. неоднород. малой степени водонас.
471	16	20,00	7	9,11	1,90	0,533	0,46							19,97	2,09								Песок мелкий плотн. неоднород. малой степени водонас.
				1		1	1	1														1	

Наименование характеристики		нений харак- стики	3на	ачения характерис	тики	Коэф. ва- риации	Коэф. надежности по грунту при доверительной вероятности		Расчетные значения характеристики при доверительной вероятности	
	общее	взятое в расчет	мин.	макс.	средн.		0,85	0,95	0,85	0,95
ИГЭ 2 Песок средней крупности	средней плотно	сти незасол	ленный от сре	едней степени	водонасыщен	ия до водон	асыщенного	неоднородн	ый	1
Лаб. №№ 278, 350, 351, 352, 353, 354, 355, 356, 357, 35	58, 359, 360									
1. Частиц >10 мм	12	12	0,0	0,0	0,0		1,0	1,0	0,0	0,0
2. Частиц 10-5 мм	12	12	0,2	2,3	1,1	0,577	1,222	1,428	0,9	0,7
3. Частиц 5-2 мм	12	12	1,2	3,6	2,0	0,423	1,154	1,282	1,8	1,6
4. Частиц 2-1мм	12	12	2,3	16,3	13,4	0,293	1,102	1,18	12,1	11,3
5. Частиц 1-0.5 мм	12	12	22,2	26,6	24,0	0,057	1,018	1,031	23,6	23,3
6. Частиц 0.5-0.25 мм	12	12	30,2	38,5	33,5	0,076	1,025	1,041	32,7	32,1
7. Частиц 0.25-0.1 мм	12	12	10,2	16,2	11,6	0,152	1,05	1,086	11,0	10,7
8. Частиц 0.1-0.05 мм	12	12	11,0	24,7	14,5	0,253	1,086	1,151	13,4	12,6
9. Плотность частиц грунта, г/см3	12	12	2,66	2,66	2,66	0,0	1,0	1,0	2,66	2,66
10. Влажность природная, %	10	10	12,28	15,02	13,59	0,059	0,98	0,967	13,87	14,05
11. Влажность водонас. грунта, %	10	10	21,83	24,58	22,73	0,032	0,989	0,982	22,98	23,15
12. Плотность грунта прир. сложения, г/см3	10	10	1,85	1,91	1,88	0,01	1,004	1,006	1,88	1,87
13. Плотность сухого грунта, г/см3	10	10	1,61	1,68	1,66	0,012	1,004	1,007	1,65	1,65
14. Плотность водонас. грунта, г/см3	10	10	2,00	2,05	2,03	0,006	1,002	1,003	2,03	2,03
15. Коэффициент пористости прир.	10	10	0,581	0,654	0,605	0,032	0,989	0,982	0,611	0,616
16. Коэффициент водонасыщения	10	10	0,54	0,63	0,60	0,05	0,983	0,972	0,61	0,62
17. Степень неоднородности грансостава	12	12	5,41	6,83	6,16	0,075	1,024	1,04	6,02	5,92
18. Плотность грунта с учетом взвешивающего воды, г/см3	10	10	1,00	1,05	1,03	0,012	1,004	1,007	1,03	1,03
19. Пористость	10	10	36,74	39,53	37,68	0,019	1,007	1,011	37,42	37,25

COLMACOBARO			
	Взам инв №	NI GIIII IIING	
	Попп и ппоП	TO HATE	
	Инв № попп	TANCTINE TO THE	

						86-05-2018-ИГИ	-2.8		
Изм	Кол уч	Лист	№ док	Подп	Дата				
Зав.	лаб.	Лан	ина	(10)	05.18	Ведомость результатов статистической	Стадия	Лист	Листов
						обработки частных лабораторных зна-	ПР	1	6
						чений физико-механических характеристик грунтов		ексная испі лаборатор ЭО «Верти	

Лист

2

86-05-2018-ИГИ-2.8

Расчетные значения харак-

теристики при доверительной вероятности

0,95

0,85

Коэф. надежности по грунту

при доверительной вероят-

0,95

0,85

Коэф. ва-

риации

средн.

Изм Колуч Лист №док Подпись Дата

1. Частиц >10 мм	7	7	0,0	0,0	0,0		1,0	1,0	0,0	0,0
2. Частиц 10-5 мм	7	7	0,0	0,0	0,0		1,0	1,0	0,0	0,0
3. Частиц 5-2 мм	7	7	0,0	0,0	0,0		1,0	1,0	0,0	0,0
4. Частиц 2-1мм	7	7	0,0	0,0	0,0		1,0	1,0	0,0	0,0
5. Частиц 1-0.5 мм	7	7	2,2	5,6	3,7	0,341	1,17	1,333	3,1	2,7
6. Частиц 0.5-0.25 мм	7	7	5,5	14,9	9,6	0,372	1,189	1,376	8,1	7,0
7. Частиц 0.25-0.1 мм	7	7	6,3	33,7	20,6	0,496	1,269	1,571	16,2	13,1
8. Частиц 0.1-0.05 мм	7	7	25,9	38,1	34,7	0,137	1,062	1,112	32,6	31,2
9. Частиц 0.05-0.01 мм	7	7	2,4	12,5	7,8	0,562	1,316	1,701	5,9	4,6
10. Частиц 0.01-0.005мм	7	7	1,9	18,5	9,4	0,711	1,436	2,09	6,5	4,5
11. Частиц 0.005-0.001мм	7	7	4,8	22,3	14,3	0,504	1,274	1,585	11,2	9,0
12. Частиц < 0.001мм	7	7	0,0	0,0	0,0		1,0	1,0	0,0	0,0
13. Плотность частиц грунта, г/см3	29	29	2,71	2,72	2,71	0,002	1,0	1,001	2,71	2,71
14. Влажность природная, %	29	29	12,34	16,21	14,20	0,086	0,983	0,974	14,44	14,59
15. Влажность водонас. грунта, %	22	22	17,60	20,83	19,81	0,039	0,991	0,986	19,99	20,10
16. Плотность грунта прир. сложения, г/см3	22	22	1,98	2,07	2,01	0,01	1,002	1,004	2,01	2,01
17. Плотность сухого грунта, г/см3	22	22	1,73	1,83	1,76	0,014	1,003	1,005	1,76	1,75
18. Плотность водонас. грунта, г/см3	22	22	2,09	2,16	2,11	0,007	1,002	1,003	2,11	2,11
19. Коэффициент пористости прир.	22	22	0,477	0,565	0,538	0,039	0,991	0,986	0,542	0,545
20. Влажность на границе текучести, %	29	29	21,34	27,25	25,05	0,056	0,989	0,983	25,32	25,49
21. Влажность на границе раскатывания, %	29	29	11,49	17,45	14,86	0,104	0,98	0,968	15,16	15,35
22. Число пластичности	29	29	8,01	13,36	10,19	0,105	0,98	0,968	10,40	10,53
23. Показатель текучести	29	29	-0,21	0,14	-0,06	0,132	0,861	0,793	-0,07	-0,08
24. Коэффициент водонасыщения	22	22	0,62	0,79	0,72	0,07	0,984	0,975	0,73	0,73
25. Модуль деф. при P=0.1-0.2 МПа естеств., МПа	6	6	4,62	5,45	5,07	0,058	1,028	1,05	4,93	4,83
26. Модуль деформации Emk естеств., МПа	6	6	23,1	27,3	25,4	0,058	1,028	1,05	24,7	24,2
27. Модуль деф. при P=0.1-0.2 МПа водонас., МПа	6	6	4,29	5,00	4,63	0,069	1,034	1,06	4,48	4,37
28. Модуль деформации Emk водонас., МПа	6	6	21,4	25,0	23,2	0,069	1,034	1,06	22,4	21,9
29. К уплотнения в интерв. 1.0-2.0 кгс/см2	6	6	0,16	0,20	0,18	0,069	1,034	1,06	0,17	0,17
30. Удельное сцепление, кПа (водонас., конс.)	6	6	33,33	38,67	35,78	0,051	1,025	1,044	34,92	34,28
31. Тангенс угла внут. трения (водонас., конс.)	6	6	0,38(20,56°)	0,41(22,29°)	0,39(21,26°)	0,03	1,014	1,025	0,38(20,99°)	0,38(20,79°)
32. Плотность грунта с учетом взвешивающего воды, г/см3	22	22	1,09	1,16	1,11	0,014	1,003	1,005	1,11	1,11
33. Пористость	22	22	32,30	36,09	34,94	0,026	1,006	1,01	34,73	34,61

Значения характеристики

макс.

Кол-во значений харак-

теристики

общее

взятое в

расчет

мин.

ИГЭ 3 Суглинок твердый лёгкий незасоленный песчанистый

Наименование характеристики

Подп и дата

Инв № подл

Наименование характеристики		нений харак- стики	Зна	чения характерист	гики	Коэф. вариации	при доверител	ости по грунту вьной вероятно- ти	теристики пр	начения харак ои доверитель оятности
	общее	взятое в расчет	мин.	макс.	средн.		0,85	0,95	0,85	0,95
	ИГЭ 4 Суглі			⊥ ый незасоленн	⊔ ый песчанисть	 ый			<u></u>	
	•									
Лаб. №№ 235, 245, 246, 255, 256, 264, 265, 266, 384, 385,	, 386, 387, 388, 38	39, 390, 391	, 392, 393, 394,	395, 396, 397, 39	98, 399, 400, 401	1, 402, 403				
1. Частиц >10 мм	6	6	0,0	0,0	0,0		1,0	1,0	0,0	0,0
2. Частиц 10-5 мм	6	6	0,0	0,0	0,0		1,0	1,0	0,0	0,0
3. Частиц 5-2 мм	6	6	0,0	0,0	0,0		1,0	1,0	0,0	0,0
4. Частиц 2-1мм	6	6	0,0	0,0	0,0		1,0	1,0	0,0	0,0
5. Частиц 1-0.5 мм	6	6	2,2	3,4	2,8	0,208	1,109	1,206	2,5	2,3
6. Частиц 0.5-0.25 мм	6	6	2,5	9,1	7,5	0,33	1,185	1,371	6,3	5,5
7. Частиц 0.25-0.1 мм	6	6	6,9	24,7	17,6	0,414	1,244	1,515	14,1	11,6
8. Частиц 0.1-0.05 мм	6	6	36,7	40,3	37,9	0,037	1,018	1,031	37,3	36,8
9. Частиц 0.05-0.01 мм	6	6	7,0	12,3	8,9	0,256	1,138	1,266	7,8	7,0
10. Частиц 0.01-0.005мм	6	6	5,3	18,5	10,1	0,471	1,287	1,629	7,9	6,2
11. Частиц 0.005-0.001мм	6	6	12,3	20,3	15,3	0,179	1,093	1,172	14,0	13,0
12. Частиц < 0.001мм	6	6	0,0	0,0	0,0		1,0	1,0	0,0	0,0
13. Плотность частиц грунта, г/см3	28	28	2,72	2,72	2,72	0,0	1,0	1,0	2,72	2,72
14. Влажность природная, %	28	28	15,63	20,06	17,45	0,061	0,988	0,981	17,66	17,79
15. Влажность водонас. грунта, %	17	17	19,85	22,45	21,21	0,032	0,992	0,987	21,38	21,49
16. Плотность грунта прир. сложения, г/см3	17	17	2,01	2,07	2,02	0,008	1,002	1,003	2,02	2,02
17. Плотность сухого грунта, г/см3	17	17	1,69	1,77	1,72	0,012	1,003	1,005	1,72	1,71
18. Плотность водонас. грунта, г/см3	17	17	2,07	2,12	2,09	0,006	1,002	1,003	2,09	2,09
19. Коэффициент пористости прир.	17	17	0,540	0,611	0,578	0,032	0,992	0,987	0,583	0,586
20. Влажность на границе текучести, %	28	28	27,32	34,78	31,18	0,055	0,989	0,982	31,52	31,73
21. Влажность на границе раскатывания, %	28	28	14,53	18,52	16,51	0,066	0,987	0,979	16,73	16,86
22. Число пластичности	28	28	11,41	16,39	14,67	0,094	0,981	0,97	14,95	15,12
23. Показатель текучести	28	28	0,02	0,21	0,06	0,147	0,877	0,815	0,07	0,07
24. Коэффициент водонасыщения	17	17	0,76	0,87	0,82	0,035	0,991	0,985	0,83	0,83
25. Модуль деф. при Р=0.1-0.2 МПа естеств., МПа	6	6	4,29	5,00	4,60	0,052	1,025	1,044	4,48	4,40
26. Модуль деформации Emk естеств., МПа	6	6	20,8	24,0	22,6	0,047	1,023	1,04	22,1	21,7
27. Модуль деф. при Р=0.1-0.2 МПа водонас., МПа	6	6	3,75	4,29	4,10	0,054	1,026	1,046	4,00	3,92
28. Модуль деформации Emk водонас., МПа	6	6	18,2	21,4	20,2	0,059	1,029	1,051	19,6	19,2
29. К уплотнения в интерв. 1.0-2.0 кгс/см2	6	6	0,19	0,22	0,20	0,048	1,023	1,041	0,20	0,20
30. Удельное сцепление, кПа (водонас., конс.)	6	6	25,33	39,33	30,22	0,164	1,084	1,155	27,88	26,16
31. Тангенс угла внут. трения (водонас., конс.)	6	6	0,37(20,30°)	0,41(22,29°)	0,39(21,55°)	0,036	1,017	1,03	0,39(21,22°)	0,38(20,98°)
32. Плотность грунта с учетом взвешивающего воды, г/см3	17	17	1,07	1,12	1,09	0,012	1,003	1,005	1,09	1,09
33. Пористость	17	17	35,07	37,91	36,57	0,02	1,005	1,009	36,38	36,26

Взам инв $N^{\underline{\circ}}$

Подп и дата

Инв Nº подл

Лист 86-05-2018-ИГИ-2.8 3 Изм Колуч Лист №док Подпись Дата

Наименование характеристики	Кол-во значений харак- теристики		Зна	Коэф. надежности по грунту при доверительной вероятности		_			
	общее	взятое в расчет	мин.	макс.	средн.	0,85	0,95	0,85	0,95

ИГЭ 5 Песок средней крупности плотный незасоленный от малой до средней степени водонасыщения неоднородный

Лаб. $\mathbb{N}^{2}\mathbb{N}^{2}$ 238, 247, 257, 258, 259, 267, 268, 273, 274, 279, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426

1. Частиц >10 мм	33	33	0,0	0,0	0,0		1,0	1,0	0,0	0,0
2. Частиц 10-5 мм	33	33	0,0	1,1	0,0	4,287	4,62		0,0	
3. Частиц 5-2 мм	33	33	0,0	5,2	1,4	0,799	1,171	1,31	1,2	1,1
4. Частиц 2-1мм	33	33	0,2	17,6	3,5	0,914	1,2	1,371	2,9	2,5
5. Частиц 1-0.5 мм	33	33	5,1	23,5	13,9	0,308	1,06	1,1	13,2	12,7
6. Частиц 0.5-0.25 мм	33	33	21,8	52,1	42,6	0,134	1,025	1,041	41,6	40,9
7. Частиц 0.25-0.1 мм	33	33	9,0	34,2	22,8	0,186	1,035	1,058	22,0	21,5
8. Частиц 0.1-0.05 мм	33	33	7,9	24,2	15,8	0,224	1,043	1,071	15,1	14,7
9. Плотность частиц грунта, г/см3	33	33	2,66	2,66	2,66	0,0	1,0	1,0	2,66	2,66
10. Влажность природная, %	33	33	6,85	14,65	9,38	0,293	0,949	0,92	9,89	10,20
11. Влажность водонас. грунта, %	20	20	19,00	20,49	19,98	0,022	0,995	0,991	20,09	20,15
12. Плотность грунта прир. сложения, г/см3	20	20	1,85	1,98	1,91	0,023	1,006	1,009	1,90	1,89
13. Плотность сухого грунта, г/см3	20	20	1,72	1,77	1,75	0,008	1,002	1,003	1,74	1,74
14. Плотность водонас. грунта, г/см3	20	20	2,07	2,10	2,08	0,004	1,001	1,002	2,08	2,08
15. Коэффициент пористости прир.	20	20	0,505	0,545	0,522	0,023	0,995	0,991	0,525	0,526
16. Коэффициент водонасыщения	20	20	0,35	0,71	0,48	0,295	0,937	0,902	0,51	0,53
17. Степень неоднородности грансостава	33	33	3,48	8,83	4,62	0,186	1,035	1,058	4,47	4,37
18. Плотность грунта с учетом взвешивающего воды, г/см3	20	20	1,07	1,10	1,08	0,008	1,002	1,003	1,08	1,08
19. Пористость	20	20	33,57	35,28	34,70	0,015	1,004	1,006	34,58	34,50

Взам инв $N^{\!\scriptscriptstyle 2}$	
Подп и дата	
нв Nº подл	

Изм	Кол уч	Лист	№док	Подпись	Дата

__49

Наименование характеристики		Кол-во значений харак- теристики		Значения характеристики			Коэф. надежности по грунту при доверительной вероятности		Расчетные значения характеристики при доверительной вероятности	
	общее	взятое в расчет	мин.	макс.	средн.		0,85	0,95	0,85	0,95
		ИГЭ 6 Су	глинок полут	вердый тяжёль	ый		1	1		
Лаб. №№ 236, 237, 239, 240, 241, 242, 243, 244, 248, 283,	284, 427, 428, 4	29, 430, 431,	, 432, 433, 434,	435, 436, 437, 43	38, 439, 440, 44	1, 442, 443				
1. Плотность частиц грунта, г/см3	28	28	2,72	2,72	2,72	0,0	1,0	1,0	2,72	2,72
2. Влажность природная, %	28	28	15,13	18,22	16,92	0,057	0,989	0,982	17,11	17,23
3. Влажность водонас. грунта, %	17	17	18,59	20,36	19,42	0,03	0,992	0,988	19,57	19,66
4. Плотность грунта прир. сложения, г/см3	17	17	2,06	2,10	2,08	0,005	1,001	1,002	2,08	2,08
5. Плотность сухого грунта, г/см3	17	17	1,75	1,81	1,78	0,01	1,003	1,004	1,78	1,77
6. Плотность водонас. грунта, г/см3	17	17	2,11	2,14	2,13	0,005	1,001	1,002	2,12	2,12
7. Коэффициент пористости прир.	17	17	0,506	0,554	0,527	0,03	0,992	0,988	0,531	0,534
8. Влажность на границе текучести, %	28	28	27,97	33,97	31,16	0,044	0,991	0,986	31,43	31,60
9. Влажность на границе раскатывания, %	28	28	14,72	17,84	16,08	0,061	0,988	0,981	16,27	16,39
10. Число пластичности	28	28	12,91	16,84	15,08	0,056	0,989	0,982	15,25	15,35
11. Показатель текучести	28	28	0,01	0,24	0,06	0,145	0,856	0,787	0,07	0,08
12. Коэффициент водонасыщения	17	17	0,81	0,92	0,87	0,04	0,99	0,983	0,88	0,89
13. Модуль деф. при Р=0.1-0.2 МПа естеств., МПа	6	6	5,45	6,00	5,70	0,039	1,019	1,033	5,59	5,52
14. Модуль деформации Emk естеств., МПа	6	6	27,2	30,0	28,5	0,039	1,019	1,033	27,9	27,5
15. Модуль деф. при Р=0.1-0.2 МПа водонас., МПа	6	6	4,62	5,00	4,94	0,032	1,015	1,027	4,86	4,81
16. Модуль деформации Emk водонас., МПа	6	6	23,1	25,0	24,7	0,032	1,015	1,027	24,3	24,0
17. К уплотнения в интерв. 1.0-2.0 кгс/см2	6	6	0,15	0,17	0,16	0,041	1,02	1,035	0,16	0,16
18. Удельное сцепление, кПа (водонас., конс.)	6	6	34,67	43,33	39,11	0,075	1,037	1,066	37,71	36,69
19. Тангенс угла внут. трения (водонас., конс.)	6	6	0,38(20,81°)	0,41(22,29°)	0,4(21,68°)	0,025	1,012	1,021	0,39(21,45°)	0,39(21,28°)
20. Плотность грунта с учетом взвешивающего воды, г/см3	17	17	1,11	1,14	1,13	0,01	1,003	1,004	1,12	1,12
21. Пористость	17	17	33,58	35,64	34,56	0,019	1,005	1,008	34,38	34,27

Взам инв $N^{\!\scriptscriptstyle 2}$	
Подп и дата	
, Nº подл	

Изм	Кол уч	Лист	№док	Подпись	Дата

50

Наименование характеристики		ений харак-	Зн	ачения характерист	гики	Коэф. ва- риации		ости по грунту льной вероят- сти	Расчетные зна теристики г тельной ве	три довери-
	общее	взятое в расчет	мин.	макс.	средн.		0,85	0,95	0,85	0,95
ИГЭ 7 Песок 1	мелкий пло	отный незасо	ленный мал	той степени вод	онасыщения і	еоднородн	ный			
Лаб. NºNº 249, 250, 251, 252, 253, 260, 269, 270, 271, 272, 275, 466, 467, 468, 469, 470, 471	, 276, 277, 2	80, 281, 282, 4	144, 445, 446	, 447, 448, 449, 4	450, 451, 452, 45	53, 454, 455	, 456, 457, 45	8, 459, 460, 46	51, 462, 463,	464, 465,

1. Частиц >10 мм	44	44	0,0	0,0	0,0		1,0	1,0	0,0	0,0
2. Частиц 10-5 мм	44	44	0,0	1,1	0,1	2,378	1,604	2,514	0,1	0,1
3. Частиц 5-2 мм	44	44	0,0	3,9	1,3	0,734	1,132	1,228	1,2	1,1
4. Частиц 2-1мм	44	44	0,0	6,9	2,3	0,642	1,113	1,194	2,1	1,9
5. Частиц 1-0.5 мм	44	44	1,2	17,4	5,9	0,472	1,081	1,136	5,5	5,2
6. Частиц 0.5-0.25 мм	44	44	14,2	40,2	30,6	0,224	1,037	1,06	29,5	28,8
7. Частиц 0.25-0.1 мм	44	44	35,5	69,9	45,4	0,175	1,028	1,046	44,1	43,4
8. Частиц 0.1-0.05 мм	44	44	5,5	24,6	14,3	0,307	1,051	1,084	13,6	13,2
9. Плотность частиц грунта, г/см3	20	20	2,67	2,67	2,67	0,0	1,0	1,0	2,67	2,67
10. Влажность природная, %	44	44	4,61	12,92	8,20	0,167	0,974	0,959	8,42	8,55
11. Влажность водонас. грунта, %	14	14	19,37	20,96	19,79	0,02	0,994	0,991	19,91	19,98
12. Плотность грунта прир. сложения, г/см3	14	14	1,84	1,91	1,88	0,011	1,003	1,005	1,88	1,87
13. Плотность сухого грунта, г/см3	14	14	1,71	1,76	1,74	0,007	1,002	1,003	1,74	1,74
14. Плотность водонас. грунта, г/см3	14	14	2,07	2,10	2,09	0,004	1,001	1,002	2,09	2,09
15. Коэффициент пористости прир.	14	14	0,517	0,560	0,533	0,02	0,994	0,991	0,536	0,538
16. Коэффициент водонасыщения	14	14	0,30	0,47	0,41	0,141	0,96	0,935	0,43	0,44
17. Степень неоднородности грансостава	44	44	2,04	3,76	3,07	0,131	1,021	1,034	3,00	2,96
18. Плотность грунта с учетом взвешивающего воды, г/см3	14	14	1,07	1,10	1,09	0,007	1,002	1,003	1,09	1,09
19. Пористость	14	14	34,09	35,88	34,57	0,013	1,004	1,006	34,44	34,36

Взам инв ${ m N}^{ m e}$	
Подп и дата	
в Nº подл	

Изм	Кол уч	Лист	№док	Подпись	Дата	

ВЕДОМОСТЬ РЕЗУЛЬТАТОВ ИСПЫТАНИЯ ГРУНТА МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ 86-05-2018-ИГИ-2.9													7^{5}
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
МЕТОДОМ КОМПРЕССИОННОГО СЖАТИЯ													
2.018 3ав. даб. Ланина 3ав. даб. Ланина 3ав. даб. Ланина 3ав. даб. Дата Дата					B	ЕДОМ	ОСТЬ	РЕЗУЛЬТАТОВ ИСПЫТАНИЯ Г	РУНТ	'A			
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория Комплексная испытательная лаборатория						ME'	ТОДО	М КОМПРЕССИОННОГО СЖАТ	'RN'				
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п Дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория													
Изм Кол уч Лист № док П о д п дата Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория													
Зав. лаб. Ланина 05.18 Ведомость результатов испытания грунта методом компрессионного сжатия ПР 18 Комплексная испытательная лаборатория ПР Комплексная испытательная лаборатория													
Ведомость результатов испытания ПР 18 грунта методом компрессионного сжатия Комплексная испытательная лаборатория								86-05-2018-ИГИ-2	.9				
грунта методом компрессионного Сжатия Комплексная испытательная лаборатория		Изм	Кол уч	Лист	Nº док	Подп	"Дата	86-05-2018-ИГИ-2	.9				
СЖатия Комплексная испытательная лаборатория										Ли	c	ΓΟ	В
лаборатория								Ведомость результатов испытания	Стадия	Ли		ГО	В
ООО «Вертикаль»								Ведомость результатов испытания грунта методом компрессионного	Стадия		18		
								Ведомость результатов испытания грунта методом компрессионного	Стадия ПР Компле	ксная ис лаборат	18 пытат ория	ельная	

: 3	:1	4,00 – 4,20	ı					: 361		
		:		٠		•				
/ 3,		/ 3	,	· -	-		-	, %		-
2,02	1,79	2,71		0,516	0,68	13,02	24,85	13,58	% 11.27	-0,05
2,02	:	2,71		<i>9,</i> 310	0,08	13,02	24,83	:	11,27	-0,03
-							0	•		
P	3	e	ε ₁		e _z	δ	퉞 0,08	<u>-</u>		
0,0	0,000	0,516 0,504	0,00		,516 ,498		о,08 о,16 о,24		Î	1
0,023	0,008	0,304	0,02		,486		ਦੂ 0,16			
0,1	0,025	0,478	0,03		,471		្តី គ្គ 0,24	j j	j	i
0,2 0,3	0,036 0,045	0,461 0,448	0,04		,451 ,439		a 0,24			
					1		Ö 0,32			
,		.,	n _k ,	(.)	. (.),	. m _k (.),	0,4	0,1 0,2	. 0,3	0,4
0,0 - 0,025 0,025 -	0,49	1,88	9,4	0,73	1,25	6,3			ное давление, ◆ 51 ¦	
0,05	0,42	2,14	10,7	0,49	1,88	9,4		(transma	armaan!	
0,05 - 0,1	0,30	3,00	15,0	0,30	3,00	15,0				
0,1 - 0,2	0,17	5,22	26,1	0,20	4,62	23,1				
0,2 - 0,3	0,13	7,06	35,3	0,12	7,50	37,5				
		E _{0,1-0,2}	2, : 5	5,22						
				0,1-0,2,	: 26,1					
		(E _{0,1-0,2} ,	: 4,62	. 22.1				
		() P=0,3	. M	$I_k E_{0,1-0,2},$: 23,1				
			P ,							
			:							
	,	(), %:								
	(), :								
						8	86-05-2018	-2.9		

: 3	: 2	4,20 – 4,40)								: 233				
. 3		:		٠	•										
		1	,	%								0.05	0.01		
> 10	10 – 5	5 – 2	2 –	1 1	1 – 0,5 3,4		- 0,25	0,25		0,1-0, $38,1$,05	0,05 – 0,01 7,6	0,01 - 0,005 6,6	< 0,0	
										, %					
/ 3,	, 3,	,	3 ,	-	, .	-		-		, , , ,			- , %		-
2,03	1,77	2,71	1 (),535	0,76	5	14,9	98	25	5,83	16,	. 86	8,97	-0,21	
- P 0,0	:	e 0,535	ϵ_1)	$\begin{array}{c} \cdot \\ \cdot \\ (& .) \\ \underline{e_z} \\ 0{,}535 \end{array}$		δ	Matter	0,08	**	*	-	-		-
0,025	0,010 0,018	0,520 0,507	0,01	14	0,513 0,501			аефор	0,16						- 5
0,1 0,2 0,3	0,028 0,040 0,050	0,492 0,473 0,458	0,03 0,04 0,05	32 45	0,486 0,466 0,451			Относкиельная пеформания	0,24	1					50
,		.,	m _k ,		.) (.)		. m _k	_ 6	0,32 0,4		0,1	0,2	0,3	0,4	2000
0,0 - 0,025	0,61	1,50	7,5	0,86	1,07		5,4				Bep	икально	е давление, М 	ИПа	
0,025 - 0,05	0,49	1,88	9,4	0,49	1,88		9,4				1	- 5 -◆	- El ; '		
0,05 - 0,1	0,31	3,00	15,0	0,31	3,00		15,0								
0,1 - 0,2 0,2 - 0,3	0,19 0,15	4,92 6,12	24,6 30,6	0,20 0,15	4,62 6,00		23,1 30,0								
		E _{0.1.0}	,2, : 4	l,92				1							
		V(1*V).	$M_k E$	0,1-0,2	: 24,6										
		(: 4,62 M _k E _{0,1-0,2}	,	: 23,1								
			P=0,3 P ,	:											
		(),	,:	•											
	(), %:													
	<u> </u>	77	•												
			<u>-</u>											-	
	+							86-0)5-20	018-	-2.	9			_
									2(2.	-			

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$: 3	: 10) 4,00 – 4,20)						:	373		
Note	. 3		:										
P E C E C S S S S S S S S S											0.05	0.01	
P E C C C C C C C C C	> 10	10 – 5	5 – 2	2 –	1 1						0,01	0,005	< 0,005
P E C E C C C C C C C										%			
2,02	, 3,	, 3,	/	3 ,	-	, .	-	-		, 70		- ,	-
P ε e ε ₁ e ₂ δ 0,0 0,000 0,550 0,000 0,550 0,000 0,550 0,000 0,550 0,005 0,005 0,0017 0,523 0,002 0,519 0,1 0,027 0,508 0,030 0,503 0,2 0,2 0,038 0,490 0,044 0,482 0,3 0,049 0,474 0,054 0,466 0,025 0,056 1,67 8,3 0,74 1,25 6,3 0,025 0,05 0,50 1,87 9,4 0,50 1,88 9,4 0,05 0,18 9,4 0,50 1,88 9,4 0,2 0,1 0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,1 0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4		/),550	0,76	j 1	5,52	26	6,63	16,69		-0,12
P ε e ε ₁ e ₂ δ 0.0 0.000 0.550 0.000 0.550 0.000 0.550 0.000 0.550 0.005 0.005 0.001 0.536 0.012 0.531 0.05 0.017 0.523 0.020 0.519 0.11 0.027 0.508 0.030 0.503 0.2 0.38 0.490 0.044 0.482 0.3 0.049 0.474 0.054 0.466 0.05 0.055 0.055 0.055 0.055 0.050 0.055 0.50 0.055 0.0		:									:		
P ε e ε ₁ c ₂ δ 0,0 0,000 0,550 0,000 0,550 0,002 0,009 0,536 0,012 0,531 0,017 0,523 0,020 0,503 0,017 0,508 0,030 0,503 0,002 0,038 0,490 0,044 0,482 0,33 0,049 0,474 0,054 0,466 0,32 0,32 0,049 0,474 0,054 0,466 0,32 0,025 0,056 1,67 8,3 0,74 1,25 6,3 0,025 0,056 1,67 8,3 0,74 1,25 6,3 0,025 0,05 1,88 9,4 0,05 1,88 9,4 0,05 1,88 9,4 0,05 1,88 9,4 0,05 1,88 9,4 0,05 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	-								0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P	3	e				δ		₩ 0,08			===6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,025	0,009		0,00	00	0,531			р ф п п 16	<u> </u>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1	0,027	0,508	0,03	30	0,503			BHAR H			1 ! ! !	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									0,24 0,24	1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									⁶ 0,32	1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				m _k ,	(.	.) (.)), (0,4	0 0,	1 0,2		0,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,025	0,56	1,67	8,3	0,74	1,25	6,3						Illa
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,05	0,50	1,87	9,4	0,50	1,88	9,4						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1												
$\begin{array}{c} M_k E_{0,1-0,2}, \qquad : 26,1 \\ \\ (\qquad) E_{0,1-0,2}, \qquad : 4,29 \\ \\ (\qquad) \qquad M_k E_{0,1-0,2}, \qquad : 21,4 \\ \\ P=0,3 \qquad : \\ \\ P \ , \qquad : \\ \\ (\qquad), \ \ldots : \\ \\ (\qquad), \ \% : \end{array}$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			E _{0,1-0}	<u>,2,</u> : 5	,22								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(
P , : (),: (), %:			()]		, : 21	,4					
(),: (),%:													
				,:									
								0.5	05.21	010	2.0		
86-05-20182.9								86	-05-20	J18-	-2.9		

		: 12 , : 3	3,00 – 3,2	20						: 26	1		
	: 3		:					_					
					·	·	•	·					
				,	%			T		Т			
> 1	.0	10 - 5	5 – 2	2 –	1 1	1 – 0,5	0,5 – 0,25	0,25 – 0	0,1 = 0	0,05	0,05 – 0,01	0,01 - 0,005	< 0,005
						4,3	12,0	28,4	37,	8	3,8	4,1	9,6
		i		ı			i						
									, %	ó		-	-
/	3,	/ 3,	/	3 '	-	, .		-				, %	
1,9	8	1,76	2,7	2	0,543	0,62	2 12	,34	23,61	12	2,93	10,68	-0,06
		:									:		
	-								0				
		-		- (.)	. (.)	_	ĸ		-	===	==••	
P 0,0		ε 0,000	e 0,543	0,0	00	$\frac{e_z}{0,543}$	δ	Относительная деформация	,08				
0,02	5	0,008	0,531	0,0	12	0,525		e do p	1,16				
0,05		0,015	0,520 0,505	0,0		0,512 0,497		HACK II		į	ļ	i i	
0,2		0,038	0,485	0,0	44	0,475		E C	,24				
0,3		0,047	0,471	0,0	53	0,461		1460	1,32	i.	Ì	j	
							m		,02	į	ì	İ	
	,		••	m _k ,	(.) (.)	. m), (.),		0,4	0,1	0,2	0,3	0,4 0,
0,0		0,49	1,88	9,4	0,74	1,25	6,3		Ů.	Be	р тикальн ое	о,з : давление, М	0,4 0, Πα
0,02										į.	+ ε +	ε1	
0,0	5	0,43	2,14	10,7	0,49	1,88	9,4			107	maaa maa ah	19,515,51	
0,05		0,31	3,00	15,0	0,31	3,00	15,0						
0,1 -	0,2	0,20	4,62	23,1	0,22	4,29							
0,2 -	0,3	0,14	6,67	33,3	0,14	6,67	33,3						
			$E_{0,1-}$	-	4,62								
			(E _{0,1-0,2} , E _{0,1-0,2} ,	: 23,1 : 4,29							
			())		M _k E _{0,1-0,2}	, : 21,4						
				P=0,3	:								
			,	P ,	:			-					
			(), %:),: :									
		(:									
			ı										
								86-05	-2018-	-2	2.9		4

: 3	: 12 , :3	2 3,20 – 3,40	0						: 262		
. 3		:									
/ 3,	/ 3,		3,		,	-	-	, %		- , ,	-
2,07	1,83	2,71	1 (0,477	0,73	12,82	2 21	,81	12,90	8,91	-0,01
P 0,0 0,025 0,05 0,1 0,2	ε 0,000 0,010 0,018 0,030 0,042	e 0,477 0,462 0,450 0,433 0,415	$\begin{array}{c} \varepsilon_1 \\ 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \end{array}$	00 0 14 0 22 0 35 0 47 0	e _z ,477 ,456 ,445 ,425 ,408	δ	Олиосильпаная деформация 0,16 0,24 0,20 0,32				
0,3 ,			. m _k ,	. (.)	. (.),	. m _k (.),	0,4	0	0,1 0 Вертикал	2 0,3 ьное давление,	0,4 ! MПа
0,025 0,025 -	0,59	1,50	7,5 9,4	0,83	1,07	9,4			[→ ε	→ εl ;	
0,05 0,05 - 0,1 0,1 - 0,2 0,2 - 0,3	0,35 0,18 0,15	2,50 5,00 6,00	12,5 25,0 30,0	0,38 0,18 0,15	2,31 5,00 6,00	11,5 25,0 30,0					
, -9-	-277	E _{0,1-0}	M _k E) E) P=0,3	5,00 6,1-0,2, 60,1-0,2,	: 25,0 : 5,00 I _k E _{0,1-0,2} ,	: 25,0					
	((), %:	,:	•							
						{	86-05-20)18-	-2.9		

	: 12	2 3,50 – 3,7	70					: 263			
: 3		:									
2,05	1,82	2,7	3'	0,493	, 0,71	12,94	- 21,34	, % 4 13,33	, , , , , , , , , , , , , , , , , , ,	-0,0	-
P 0,0 0,025 0,05 0,1 0,2 0,3 , 0,0 - 0,025 0,025 0,025 0,05	E 0,000 0,011 0,021 0,034 0,045 0,055	e 0,493 0,477 0,462 0,442 0,426 0,411 .,	0,0 0,0 0,0 0,0	015 (025 (039 (051 (051 (051 (051 (051 (051 (051 (051	e _z 0,493 0,471 0,456 0,435 0,417 0,402 1,00 1,50	. m _k (.), 5,0 7,5	0,08 0,16 0,16 0,32 0,4 0	Вертик	0,2 0,3 альное давления 5. ◆ 81	0,4 a, MIIa	0,
0,05 - 0,1 0,1 - 0,2 0,2 - 0,3	0,39 0,16 0,15	2,31 5,45 6,00	11,5 27,3 30,0	0,42 0,18 0,15	2,14 5,00 6,00	10,7 25,0 30,0					
		((M_k	:	: 27,3 : 5,00 $M_k E_{0,1-0,2}$: 25,0					
	((), %									
						8	36-05-2018	32.9			6

1.4		: 1	8,70 – 8,9	90						: 384			
1, 3	: 4		:										
2.01 1.74 2.72 0.568 0.76 15.85 30.25 15.02 15.23 0.05 P	/ 3,	, 3,	/	3,		-		-	, %	,	- ,		
P ε e ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε	2,01	1,74	2,7	2 (0,568	0,76	15,85	5 30,	25	,		0,05	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$:								:			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P 0,0 0,025	0,000 0,006	0,568 0,558	ϵ_1 0,00 0,0	00 0, 12 0,	.) e _z ,568 ,549	δ		***				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1 0,2	0,022 0,035	0,533 0,513	0,02	26 0, 41 0,	,527 ,503		и женяпециная 1 0,24 -					221
0,0- 0,025 0,38 2,50 12,3 0,75 1,25 6,1 0,025- 0,05 0,38 2,50 12,3 0,25 3,75 18,4 0,05- 0,1 0,31 3,00 14,7 0,31 3,00 14,7 0,1-0,2 0,20 4,62 22,7 0,24 4,00 19,6 0,2-0,3 0,14 6,67 32,7 0,14 6,67 32,7 E _{0,1-0,2} , : 4,62 M _k E _{0,1-0,2} , : 4,00 () M _k E _{0,1-0,2} , : 19,6 P-0,3 () M _k E _{0,1-0,2} , : 19,6 P-0,3 () M _k :			.,					0,4 -))	0,1 0,2	0,3	0,4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,38	2,50	12,3	0,75	1,25	6,1			Вертикаль	ное давление, l	МПа	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,05	0,38	2,50	12,3	0,25	3,75	18,4			1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,05 - 0,1	0,31	3,00	14,7	0,31	3,00	14,7						
$\begin{array}{c} M_k E_{0,1-0,2}, \qquad : 22,7 \\ \\ (\qquad) E_{0,1-0,2}, \qquad : 4,00 \\ \\ (\qquad) \qquad M_k E_{0,1-0,2}, \qquad : 19,6 \\ \\ P=0,3 \qquad : \\ \\ P \ , \qquad : \\ \\ (\qquad), \ \ldots : \\ \\ (\qquad), \ \% : \end{array}$	0,1 - 0,2												
P=0,3 : P , : (),: (), %:			E _{0,1} .	M _k E	2 _{0,1-0,2} , 2 _{0,1-0,2} ,	: 4,00							
(),%:			(P=0,3	:	_k E _{0,1-0,2} ,	: 19,6						
(), :													
		(),	:									
													Т

. 4	: 5 , :′	7,20 – 7,	40						: 389			
: 4		:										
/ 3,	, 3,	/	3,	-	,	-	-	,	%	- %		-
2,03	1,75	2,7	72	0,557	0,79	16,23	3	1,12	15,25	15,87	0,06	
-	:						C				}	
	-		- (.) (.)	-	5	2 B		* ====		
P 0,0	ε 0,000	e 0,557	0.	$\frac{\varepsilon_1}{000}$ 0	e _z	δ	0,08	3		1		55
0,025	0,008	0,545	0,	012 0	,539		[일 0,16	ļ		 		
0,05 0,1	0,015 0,025	0,534 0,518	0,	029 0	,528 ,512		Отиосительная деформация 0.74 0.75 0.35	X 4 - 0 X	i I		ļ	
0,2	0,038	0,498 0,484			,490 ,476		0,24 5	1		1		
-,-	~,~ · · ·	0,101			,		e 0,32	·		 		
,	٠	.,	m _k ,	(.)	. (.),	. m _k (.),	0,4	0		0,2 0,3	0,4	C
0,0 - 0,025	0,50	1,88	9,3	0,75	1,25	6,2			Бертика	пъное давление	, MIIA	
0,025 - 0,05	0,44	2,14	10,6	0,44	2,14	10,6			1.17.13.	→ £1 ¦		
0,05 -	0,31	3,00	14,9	0,31	3,00	14,9						
0,1 0,1 - 0,2	0,20	4,62	22,9	0,22	4,29	21,3						
0,2 - 0,3	0,14	6,67	33,1	0,14	6,67	33,1						
		E _{0,1}	-0,2,	: 4,62								
			M_k	E _{0,1-0,2} ,	: 22,9							
		(<u> </u>	E _{0,1-0,2} ,	: 4,29 I _k E _{0,1-0,2} ,	: 21,3						
			P=0,3	:	-K -0,1-0,27	,_						
		(P ,	:								
		(), %										
	(),	:									
ı	1 1	ı	<u> </u>	ı							ı	
	+	-+				8	86-05-2	018-	-2.9		-	
ı								-				

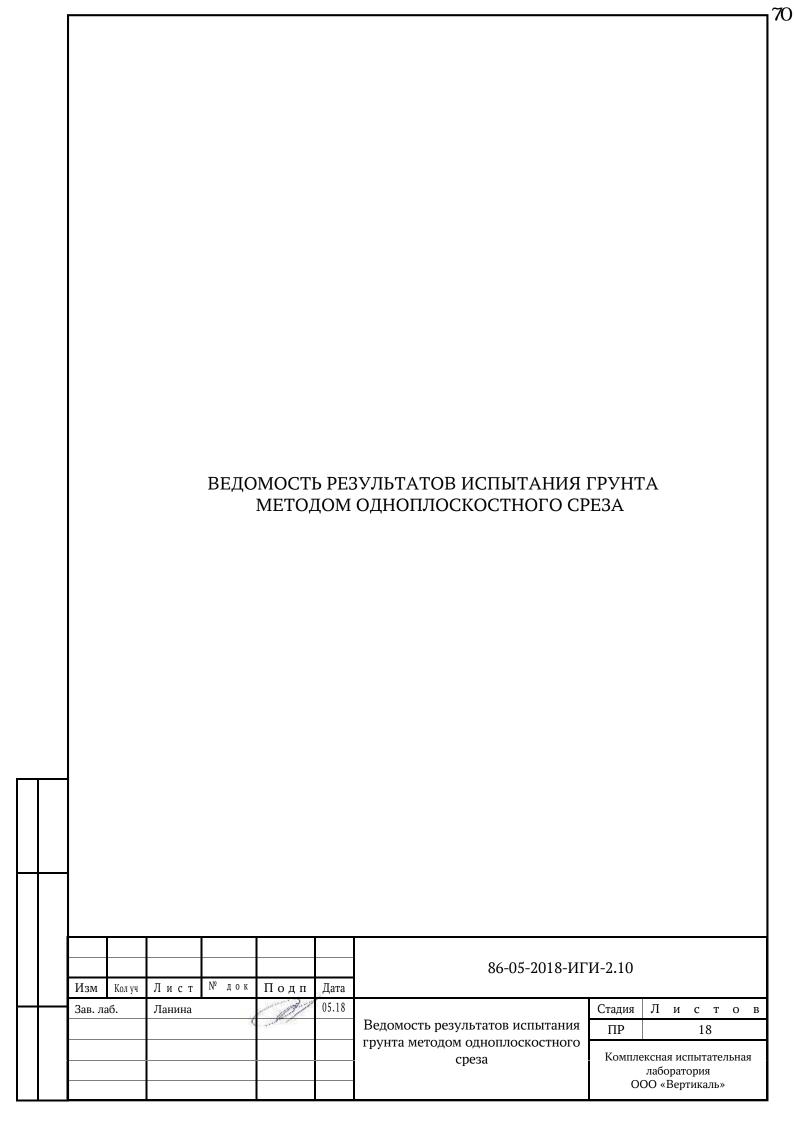
	: 12 , :	2 6,00 – 6,2	20						: 264			
: 4		:										
/ 3,	/ 3,	/	3,		· · · ·		-	,	%	- , %		-
2,01	1,72	2,7	/2	0,579	0,78	16,72	2 2	27,45	14,53	12,92	0,17	7
P 0,0 0,025 0,05 0,1 0,2 0,3	ε 0,000 0,010 0,019 0,029 0,043 0,053	e 0,579 0,564 0,549 0,534 0,512 0,496	(ε 0,0 0,0 0,0 0,0 0,0 0,0 0,0	00 0, 13 0, 22 0, 32 0, 48 0,		δ	Относительная деформация 50.00 016	1				
,		.,	. m _k ,	. (.)	. (.),	. m _k (.),	0,32		0,1 0,2	2 0,3	0,4	
0,0 - 0,025 0,025 -	0,63	1,50	7,3	0,82	1,15	5,6			Бертикаль — €	ное давление, I → ε1 ¦	Mila	
0,05 0,05 -	0,57	3,00	8,1	0,57	1,67 3,00	8,1	_					
0,1 0,1 - 0,2 0,2 - 0,3	0,32	4,29 6,00	20,8	0,32	3,75 6,00	18,2 29,1	-					
		(M _k E	E _{0,1-0,2} , M	: 20,8 : 3,75 k E _{0,1-0,2} ,	: 18,2						
		(), %:),: :									
	(),	:				l					
												Τ

_	: 12	2 6,30 – 6,50							: 265			
: 4		:										
								, %]			
/ 3,	/ 3,	/ 3,		-	,		-			, %		
2,05	1,75	2,72	0,5	551	0,83	16,87	28,2	21	16,13	12,08	0,06	j
	:								:			
-			(.)	-	0+	**				
P 0,0	ε 0,000	e 0,551	ϵ_1 0,000		e _z 551	δ	ин 0,08 0,16 0,16 0,32 0,32					i i
0,025	0,005	0,543	0,008	0,	538		မြို့ မြို့ 0,16 -					200
0,05 0,1	0,010 0,017	0,535 0,524	0,014 0,021		529 518		BRAT I			į		
0,2 0,3	0,030 0,040	0,504 0,489	0,035 0,046	0,	496 479		6 0,24 5				····	
0,5	0,040	0,407	0,040	0,	7//		0,32 -					
,		., m,		. (.)	. (.),	. m _k (.),	0,4		0,1 0,		0,4	
0,0 - 0,025	0,31	3,00	5,0	0,50	1,88	9,4			Вертикали	жое давление, 	МПа	
0,025 - 0,05	0,31	3,00 1	5,0	0,37	2,50	12,5			E	→ εl ;		
0,05 -	0,22	4,29 2	21,4	0,22	4,29	21,4						
0,1 0,1 - 0,2	0,20	4,62	23,1	0,22	4,29	21,4						
0,2 - 0,3	0,16	6,00	30,0	0,17	5,45	27,3						
		E _{0,1-0,2} ,	: 4,62		22.1							
		($M_k E_{0,1}$: 23,1 : 4,29							
		()	M_1	E _{0,1-0,2} ,	: 21,4						
			P=0,3 , :									
		(),										
	((), %:), :										
<u> </u>	 	ı		 								Т
						8	6-05-201	18-	-2.9			\mid

4	: 12 , : 0	2 6,60 – 6,80)					: 266			
: 4		:									
								, %			-
/ 3,	/ 3,	,	3 '	2 7 4 2	,	15.00			, %	0.1	
2,07	1,77	2,72	2 (0,540	0,87	17,20	27,32	15,91	11,41	0,1	1
_							85				
-	-	-	(.) ()	-	0-	•	===•		
P 0,0	ε 0,000	e 0,540	ϵ_1		e _z	δ	о,08				
0,025	0,000	0,540	0,00		,528		다 할 0,16			1	
0,05	0,010	0,525	0,0	14 0	,518		# 0,10 T			1	90,5
0,1	0,017 0,031	0,514 0,493	0,02		,508 ,485		و 0,24				
0,3	0,040	0,478	0,04		,471		HOCINT				
							E 0,32				
,		.,	m _k ,	(.)	· (.),	. m _k (.),	0,4	0,1 0,2	0,3	0,4	(
0,0 - 0,025	0,31	3,00	15,0	0,49	1,88	9,4	Ů	Вертикалы	юе давление,		100
0,025 - 0,05	0,31	3,00	15,0	0,37	2,50	12,5		; <u> ◆ </u>	÷ £1 ¦		
0,05 - 0,1	0,22	4,29	21,4	0,22	4,29	21,4					
0,1 - 0,2 0,2 - 0,3	0,21 0,15	4,44 6,32	22,2 31,6	0,23 0,14	4,00 6,67	20,0					
0,2 0,3	0,13			•	0,07	33,3					
		$E_{0,1-0}$		0,1-0,2	: 22,2						
		(C _{0,1-0,2} ,	: 4,00						
		()	M	$I_k E_{0,1-0,2},$: 20,0					
			P=0,3 P ,	:							
		()	,:								
		(), %:									
	(),	:								
											Ī
						8	86-05-2018-	-2.9			
	.]]										I

: 4	: 14	 6,00 – 6,20	0					: 401			
: 4		:		•	٠						
, 3			3,			-	,	, %	_		-
2,02	1,71	2,72		0,589	0,83	18,02	2 31,02	17,45	% 13,57	0,04	1
2,02	:	2,72		0,509	0,02	10,02	31,02	:	13,57		•
-	· -						0	•			
P	3	e	(ε ₁	.) (.) e _z	δ	∯ 0,08	∤∓			
0,0	0,000	0,589	0,00	00 0,	,589		wdo.	1 1	r L		
0,025	0,009	0,575 0,562	0,02		,570 ,557		ម្ពី 0,16				m
0,1	0,017	0,546	0,03		,542		ьнал	1	ŀ		
0,2	0,039	0,527	0,04	44 0.	,519		E 0,24				2
0,3	0,048	0,513	0,03	54 0,	,503		О.32				
,		.,	m_k ,	(.)	. (.),	. m _k (.),	0,4	0,1 0,2	0,3	0,4	0
0,0 - 0,025	0,57	1,67	8,0	0,76	1,25	6,0		Вертикальн	юе давление, ← 81 ¦		
0,025 - 0,05	0,51	1,87	9,0	0,51	1,88	9,0		*			
0,05 - 0,1	0,32	3,00	14,4	0,32	3,00	14,4					
0,1 - 0,2 0,2 - 0,3	0,19 0,14	5,00 6,67	24,0 32,0	0,22 0,16	4,29 6,00	20,6					
		$E_{0,1-0}$),2, : 5	5,00							
		(M _k E		: 24,0						
		()		: 4,29 _k E _{0,1-0,2} ,	: 20,6					
			P=0,3	:							
		,		:							
		(), %:	,:								
	(:								
						•					
	$+$ \top					8	86-05-2018-	-2.9			1
. .			.								1

_	:1 , :1	12,20 – 12	2,40					: 427		
: 6		:		•	·					
/ ³ , 2,08	1,79	2,7	3,	0,520	, 0,85	16,23	31,25	, %	, %	0,05
	:		,			,	,	:	,	,
P 0,0 0,025 0,05 0,1 0,2 0,3	ε 0,000 0,006 0,012 0,022 0,032 0,042	e 0,520 0,511 0,502 0,486 0,471 0,456	((((0,0) 0,0 0,0 0,0 0,0 0,0 0,0	00 0 10 0 16 0 26 0 39 0		δ	Одиосильными деформации 0,08			
, 0,0 -		.,	. m _k ,	(.)	. (.),	. m _k (.),	0,4	0,1 0,2 Вертикаль	О,3 ное давление, I	0,4 (МПа
0,025 0,025 -	0,36	2,50	12,5 12,5	0,61	1,50 2,50	7,5		, - ε		
0,05 0,05 - 0,1	0,30	3,00	15,0	0,30	3,00	15,0				
0,1 - 0,2 0,2 - 0,3	0,16 0,14	5,71 6,32	28,6 31,6	0,20 0,14	4,62 6,67	23,1				
		E _{0,1-0}	M _k E	30,1-0,2	: 28,6 : 4,62					
		(P=0,3 P ,	:	I _k E _{0,1-0,2} ,	: 23,1				
	((), %:),:	•						
<u> </u>	 	<u> </u>	<u> </u>	<u> </u>						ı
						8	6-05-2018-	-2.9		


	; 2	11,30 – 1	1,50					: 23	6		
: 6		:									
/ 3,	/ 3,	/	3,		,	-	-	, %		- , %	-
2,06	1,75	2,7	72	0,554	0,87	17,67	31,50	6 10	6,64	14,92	0,07
	:								:		
-			(-	0 5	F-4			
P 0,0	ε 0,000	e 0,554	3	1	,554	δ	0,08				1
0,025 0,05	0,007 0,014	0,543 0,532	0,0	11 0,	,537 ,526		0,08 0,16 0,24 0,32				
0,1	0,024	0,516	0,0	28 0,	,510		жня 18 10,24 —	i.	j.		j
0,2	0,035 0,044	0,499 0,485			,492 ,476		0,24 0,24	1	ì		
,		.,	. m _k ,	. (.)	. (.),	. m _k (.),	0,4	0,1	0,2	0,3	0,4
0,0 - 0,025	0,43	2,14	10,7	0,68	1,36	6,8	ŭ	Be	ртикальн 0,2	о,з ое давление, I	MΠa.
0,025 -	0,44	2,14	10,7	0,44	2,14	10,7		i.	• Е →	► ε1 ¦	
0,05 0,05 -	0,31	3,00	14,9	0,31	3,00	14,9					
0,1 0,1 - 0,2	0,17	5,45	27,2	0,19	5,00	24,9					
0,2 - 0,3	0,14	6,67	33,2	0,16	6,00	29,9					
		E _{0,1}		5,45							
		(: 27,2 : 5,00						
		()	M	_k E _{0,1-0,2} ,	: 24,9					
			P=0,3 P ,	:							
		(), %),:								
	(:								
						8	6-05-2018	32	2.9	_	
	. 							- 4			

	: 2 , : 1	17,00 – 17	7,20					: 241			
: 6		:									
2,07	/ ³ , 1,75	2,7	3,	0,551	, 0,89	- 18,01	- 33,97	, % 7 17,79	, , %	- 0,0	- - 01
,	:		1		,	,	,	:	<u>, </u>		
P 0,0 0,025 0,05 0,1 0,2 0,3	ε 0,000 0,009 0,017 0,027 0,037 0,045	e 0,551 0,537 0,524 0,509 0,493 0,481	$\begin{array}{c} \varepsilon_1 \\ 0,00 \\ 0,0 \\ 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \end{array}$	00 0 12 0 20 0 30 0 42 0	e _z ,551 ,532 ,520 ,504 ,486 ,473	δ	0,08 0,16 0,24 0,32				
, 0,0 -			m _k ,	(.)	. (.),	. m _k (.),	0,32 + - 0,4 + 0	0,1 Beptro	0,2 0,3 капьное давлено	0,4 e. МПа	0,
0,025 0,025 -	0,56	1,67	9,4	0,74	1,25	6,2 9,4			ε → ε1 ¦	(A-100, 1-54)	
0,05 0,05 - 0,1 0,1 - 0,2	0,31	3,00	15,0	0,31	3,00	15,0					
0,2 - 0,3	0,12	7,50 E _{0,1-0} (M _k E	30,1-0,2	7,50 : 30,0 : 5,00 : k E _{0,1-0,2} ,	: 25,0					
	((), %:	P ,:	:							
						5	86-05-2018	32.9			\blacksquare

_	: 5 , :	14,00 – 1	4,20					: 433		
: 6		:				·				
, 3,	,		3,	-	-		-	%	-	
2,08	1,79	2,7		0,516	0,84	15,95	29,99	15,20	% 14,79	0,05
	:	, .	1					:		
- P	- &	e	(.) (ε ₁) e _z	δ	0	•	==	
0,0	0,000	0,516	0,	013	0,516		а форма 0,16			
0,05 0,1 0,2	0,018 0,028 0,039	0,489 0,474 0,458	0,	032	0,483 0,468 0,450		15 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18			
0,3	0,047	0,445			0,436		одиосильная и веформатил одиосильная 0,24			
,		.,	m _k ,	(.)),	. m _k (.),	0,4	0,1 0,2	0,3	0,4
0,0 - 0,025	0,61	1,50	7,5	0,79	1,15	5,8		Вертикальн	юе давление, l	МПа
0,025 - 0,05	0,49	1,88	9,4	0,55	1,67	8,3			← £1 ¦	
0,05 - 0,1	0,30	3,00	15,0	0,30	3,00	15,0				
0,1 - 0,2 0,2 - 0,3	0,16 0,13	5,68 7,12	28,4 35,6	0,18 0,14	5,00 6,67	25,0 33,3				
		E _{0,1}	-	5,68	20.4					
		(E _{0,1-0,2} , E _{0,1-0,2} ,	: 28,4 : 5,00					
		() P=0,3		$M_k E_{0,1-0,2},$: 25,0				
			P ,	:						
		(), %),: :							
	(),	:							
							6-05-2018-	-2.9		

; 6	1,79 :				, 0,87	16,65	-	,	%			- ,		-
2,09	1,79			0,518	, 0,87	16.65	-	,	%			- ,		-
2,09	1,79),518	0,87	16.65	. 2							
	:) 3	1,10	1	6,00	1	% 5,10	0,04	1
										:				
D	-)	-	00	-	-		+ ==			
	ε	e	ε ₁		e_z	δ	80,0	3 	‡		ļ	{		
	0,000	0,518 0,509	0,00		,518 ,504		wdоф	<i>s</i>	1		1		1	
0,05	0,012	0,500	0,01	15 0,	,495		ිස් 0,16 සූ	1	†		1			(4.), f.
	0,022	0,485 0,469	0,02		,480 ,462		된 0,24				<u> </u>			100
	0,032	0,469	0,03		,450		HOCE		1		1	i L	1	
,		.,	m _k ,	. (.)	. (.),	. m _k (.),	€ 0,32 0,4		0,1	0	2	0,3	0,4	
0,0 - 0,025	0,36	2,50	12,5	0,55	1,67	8,3			В	ертикал	вное да	авление,	МПа	
0.025	0,36	2,50	12,5	0,36	2,50	12,5				- ε	₹ 5	1 :		
0.05	0,30	3,00	15,0	0,30	3,00	15,0								
0,1 - 0,2	0,15	5,88	29,4	0,18	5,00	25,0								
0,2 - 0,3	0,12	7,69	38,5	0,12	7,50	37,5								
		$E_{0,1-0}$),2, : 5		20. 1									
		(: 29,4 : 5,00									
		()		_k E _{0,1-0,2} ,	: 25,0								
			P=0,3	:										
		()	P ,	:										
	(), %:												
	(),	:											

	: 9 , :	14,50 – 1	4,70						:	248				
: 6		:			٠									
, 3,			3,		-		-		, %			-		-
2,10	1,78	2,7		0,527	0,92	17,92	2	32,01		16,71		% 15,30	0,0	8
	:									:				
-								0	- 	,			·	
P	3	e	ε;	.) (e _z	δ	₩ 0,	08				==• ·		
0,0 0,025	0,000 0,007	0,527	0,0	00 0,	,527		форма	enace			Ì	16 16 18 18		
0,05	0,014	0,517 0,506	0,0	18 0,	,511 ,500		o Hed	16			1			
0,1 0,2	0,024 0,035	0,491 0,474	0,0		,485 ,466		е л ана 0:	24			<u>.</u>			
0,2	0,033	0,474			,453		Относительная деформация	000		E E E E	1			
						. m _k	- 5°0,	32		 				
,		.,	m _k ,	(.)	(.),	(.),	0),4 	0	1)	0,2	0,3	0,4	
0,0 - 0,025	0,43	2,14	10,7	0,67	1,36	6,8				Вертика	штное	давление,	МПа	
0,025 - 0,05	0,43	2,14	10,7	0,43	2,14	10,7						E1 i		
0,05 - 0,1	0,31	3,00	15,0	0,31	3,00	15,0								
0,1 - 0,2 0,2 - 0,3	0,17 0,14	5,45 6,67	27,3 33,3	0,18 0,14	5,00 6,67	25,0 33,3	-							
0,2 0,3	U,1-T				0,07	55,5]							
		E _{0,1} .	. _{0,2} , : 5		: 27,3									
		(: 5,00									
		()	M	_k E _{0,1-0,2} ,	: 25,0								
			P=0,3 P ,											
),:											
		(), %),												
	(),	:											

	: 1	00 – 6,20				:	362			
: 3	:									
		72 . 35 .	, %				122	248-2010		
> 10	10 – 5	5-2 2		1 – 0,5 3,2	0,5 - 0,25 6,6	0,25 0,1 13,3	0,0	5 0,01	0,01 – 0,005 15,2	< 0,005
/ 3,	/ 3,	/ 3,	· -		-	-	, (%	- , %	-
2,00	1,77	2,72	0,536	0,6	6	12,95	24,12	13,36	10,76	-0,04
XACAPETEROS KAUDZINES, MILA O. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 0,1	1 0,2 мальное напряж	0,3 жите, МПа	0,4						
0,1 0,2 0,3		44,8	, 1,077 1,112 1,155	,	,	,				
		21,31 36,67			1					
						86-05	-2018-	-2.10		1

	: 5						365			
, :5,00 – 5,20 :3 :						:				
		72 . 35 .	, %				1224	8-2010		
> 10	10 – 5	5-2	2 – 1	1 – 0,5	0,5 - 0,25	0,25 - 0,1	0,1 - 0,05	0,05 – 0,01	0,01 - 0,005	< 0,005
/ 3,	, 3,	/ 3,		-		-	, %		- , %	-
2,01	1,76	2,71	0,543	3 0,7	/2 14	1,45	25,20	15,23	9,97	-0,08
0,4										
жение, МПа	1 -									
касательное напряжение, МПа	20									
				3 0,4						
Ċ	,	 	. 0,	, 0,4						
C	0 0	,1 0,2 омальное напр	9 од ряжение, М	Па						
C	0 0	,1 0,2 эмальное нап	0, ржение, М	Па						
0,, 0,; 0,;	0 0 noj	омальное напу 31,2 44,0 61,2	ряжение, М	Па		,				
0, 0,, 0,, 0,,	, , , , , , , , , , , , , , , , , , ,	31,2 44,0 61,2	0,078 0,11 0,153	Па		,				
0, 0, 0, 0,	, , , , , , , , , , , , , , , , , , ,	31,2 44,0 61,2	0,078 0,11 0,153	Па		,				
0, 0,, 0,, 0,,	, , , , , , , , , , , , , , , , , , ,	31,2 44,0 61,2	0,078 0,11 0,153	Па		,				

	: 9	50 – 2,70				: 371	Į				
: 3						•					
		72 . 35 .	, %				12248-2	2010			
> 10	10 – 5	5 – 2	2-1	1 – 0,5	0,5 – 0,25	0,25 – 0,1	0,1 - 0,05	0,05 – 0,01	0,01 – 0,005	< 0,005	
2,02	1,76	2,71	0,540	0,7	 	4,78	, %	15,85	, % 9,18	-0,12	
0,4 - 0,0 - 0,3 - 0,0 - 0,1 - 0,0 - 0,1 -	0 0,	1 0,2 мальное напря	0,3	0,4 a							
0,1 0,2 0,3	,	44,0	0,075 0,11 0,153			,					
	,	21,31									
						86-05-20)18	2.10			3

	: 11						375			
: 3		,50 – 1,70 :				:				
	1	72 . 35 .	, %	1				3-2010		
> 10	10 – 5	5 – 2	2 – 1	1 – 0,5	0,5 – 0,25	0,25 - 0,1	0,1 - 0,05	0,05 – 0,01	0,01 – 0,005	< 0,005
2,01	1,74	2,71	0,55	7 0,7	5 15	-	25,85	16,03	, - % 9,82	-0,05
0,4 жасатыное напряжение, МПа 0,2 0		,1 0,2 рмальное нап	2 0,; ряжение, М	3 0,4 Па						
0,1 0,2 0,3	3	30,4 44,8 63,2	0,076 0,112 0,158		,	,				
	,	33,3								
						86-05-	-2018-	-2.10		4

	: 12					:	261				
: 3	, :3,	00 – 3,20				:					
	:				٠						
		72 . 35 .					1:	2248-2	010		
		35 .	, %	7					7		
> 10	10 – 5	5 – 2	2 – 1	1 – 0,5	0,5 – 0,25	0,25 0,1	0,	1 – 05	0,05 – 0,01	0,01 - 0,005	< 0,005
				4,3	12,0	28,4	. 3'	7,8	3,8	4,1	9,6
								, %		_	-
/ 3,	/ 3,	/ 3,		-		-				%	
1,98	1,76	2,72	0,543	3 0,6	52	12,34	23,61		12,93	10,68	-0,06
0,4			•								
ort:	23										
∰ 0,3 *a	-										
фижен	*										
∯ 0,2											
Ř											
1,0 SCATTERFOR	-										
касательное капрлжение, МПа 7°0											
o					ī						
0	0 0,		0,3	3 0,4							
0	0 0,	1 0,2	0,3	3 0,4							
0	0 0,	1 0,2	0,3	3 0,4							
0	0 0,	1 0,2 омальное напря	0,3 окение, МІ	3 0,4 Ta							
0,1	0 0,	1 0,2 омальное напря , ,	0,3	3 0,4 Ta		,					
0	0 0,	1 0,2 Омальное напря ; ;	0,3 oxerme, MI -	3 0,4 Ta		,					
0,1 0,2	0 0,	1 0,2 Омальное напря ; ;	0,3 0,075 0,11 0,152	3 0,4 Ta		,					
0,1 0,2 0,3	,		0,3 0,075 0,11 0,152	3 0,4 Ta		,					
0,1 0,2 0,3	,	1 0,2 омальное напря 30,0 44,0 60,8	0,3 0,075 0,11 0,152	3 0,4 Ta		,					
0,1 0,2 0,3	,	1 0,2 омальное напря 30,0 44,0 60,8	0,3 0,075 0,11 0,152	3 0,4 Ta		,					

	: 15					. :	382			
. 2	, :4	-,00 – 4,20				:	762			
: 3		:								
		72 . 35 .					12248	-2010		
			, %							
> 10	10 – 5	5 – 2	2 – 1	1 - 0,5	0,5 – 0,25	0,25 - 0,1	0,1 - 0,05	0,05 – 0,01	0,01 - 0,005	< 0,005
							, %			
, 3,	/ 3,	/ 3,	-		-	-			-	-
2,01	1,74	2,71	0,553	0,7		5,22	25,96	15,88	10,08	-0,07
	2,7 .	2,11	0,000	, ,,,		5,22	20,20	10,00	10,00	0,07
0.4	least.									
0,4										
്ര	2									
₩ 0,3	} -									
eHTRe,										
第 0,2										
# °,-			1	0.0.0.0.0.0.0.0.						
епън	Ï	سل								
касательное напримение, МПа 0,0										
ĝ	, .	<u> </u>	. 							
	0 0 no),1 0,2 рмальное напря	0,3 жение, МП	0,4 a						
	3	R 145	33.							
			_							
					•					
	,	,	,		,	,				
0,1	, L		0.076		,	,				
0,1	2	30,4 44,0	0,076 0,11		,	,				
	2	30,4 44,0	0,076 0,11 0,153		,	<u>'</u>				
0,2 0,3	2	30,4 44,0	0,11 0,153		,					
0,2 0,3	3	30,4 44,0 61,2	0,11		,	,				
0,2	2 3 , ,	30,4 44,0 61,2 21,06	0,11		,	,				
0,2	2 3 , ,	30,4 44,0 61,2 21,06	0,11		,	,				
0,2	2 3 , ,	30,4 44,0 61,2 21,06	0,11		,					
0,2	2 3 , ,	30,4 44,0 61,2 21,06	0,11		,	86-05-	2018-	-2.10		

	: 2	0 – 8,70			<u>:</u>	235			
: 4	:								
	,	72 . 35 .				1224	8-2010		
	3	35 .	, %						
> 10 1	0-5	5 – 2	2 – 1 1 –	- 0,5 0,	5 – 0,25 25 0,1	- 0,1 - 0,05	0,05 – 0,01	0,01 - 0,005	< 0,005
2,		/ 3,			-	, %		_	-
2,02	1,74	2,72	0,568	0,79	16,42	30,09	14,92	% 15,17	0,10
									_
0,4 T									
ď									
. M. 0,3 ∤									
数 页 0,2									
ъное к			المسي						
касательное напрлжение, МПа 1.0 1.0									
_									
0 - 0	0,1		0,3	.0,4					
	норм	альное напрях	кение, MIIIa						
			-						
	,	,	,	,	,				
0,1 0,2		28,0 40,0	0,07 0,1						
0,3		60,8	0,152						
	,	22,29							
		25,33							
					86_05	5-2018-	-2.10		
					00-UJ	J-2010 -	-2.10		7

	: 5						: 390				
		00 – 8,20				:	: 390				
: 4	:										
	•		·	·							
		72						12248-2	2010		
		72 . 35 .						12246	2010		
			, %	7	10.5			0.1	1		
> 10	10 - 5	5 – 2	2 – 1	1 - 0,5	0,5 - 0,25	- 0,25 5 0,1	_ [0,1 – 0,05	0,05 – 0,01	0,01 - 0,005	< 0,005
								, %			
,		,		-	-			, 70		-	-
/ 3,	/ 3,	/ 3,								%	
2,03	1,72	2,72	0,584	1 0,	85	18,20	33,0)2	17,20	15,82	0,06
0,4	1	ri ri		- 1							
₽ 0,3	-										
HTM	ŵ.										
Ř											
E 00											
를 0,2 *											
0,2 0,2	-										
о,2 1,0 1,0											
ельное н											
0	0 0,	1 0,2	0,3	3 0,4	1						
0	0 0,		0,3	3 0,4	1						
0	0 0,	1 0,2	0,3	3 0,4	1						
0	0 0,	1 0,2	0,3	3 0,4	1						
0	0 0,	1 0,2	0,3	3 0,4	1						
0	0 0,	1 0,2	0,3 ожение, МІ	3 0,4							
0	0 0,	1 0,2	0,3 ожение, МІ	3 0,4	. , ,	,					
Ō	0 0,	1 0,2 эмальное напря	0,3 ожение, МІ	3 0,4		,					
0,1 0,2	,	1 0,2 омальное напря ; ; 27,6 43,2	0,3 0,069 0,108	3 0,4		,					
0,1	,	1 0,2 омальное напря ; ; 27,6 43,2	0,3 roke hore, MI - - 0,069	3 0,4		,					
0,1 0,2	,	1 0,2 омальное напря ; ; 27,6 43,2	0,3 сжетате, MI - - 0,069 0,108 0,148	3 0,4		,					
0,1 0,2 0,3	0 0,	1 0,2 омальное напря 27,6 43,2 59,2	0,3 сжетате, MI - - 0,069 0,108 0,148	3 0,4		,					
0,1 0,2 0,3	,	1 0,2 омальное напря ; ; 27,6 43,2 59,2	0,3 сжетате, MI - - 0,069 0,108 0,148	3 0,4		,					
0,1 0,2 0,3	,	1 0,2 омальное напря 27,6 43,2 59,2	0,3 сжетате, MI - - 0,069 0,108 0,148	3 0,4		,					
0,1 0,2 0,3	,	1 0,2 омальное напря 27,6 43,2 59,2	0,3 сжетате, MI - - 0,069 0,108 0,148	3 0,4		,					
0,1 0,2 0,3	,	1 0,2 омальное напря 27,6 43,2 59,2	0,3 сжетате, MI - - 0,069 0,108 0,148	3 0,4		,	5-2018		2.10		

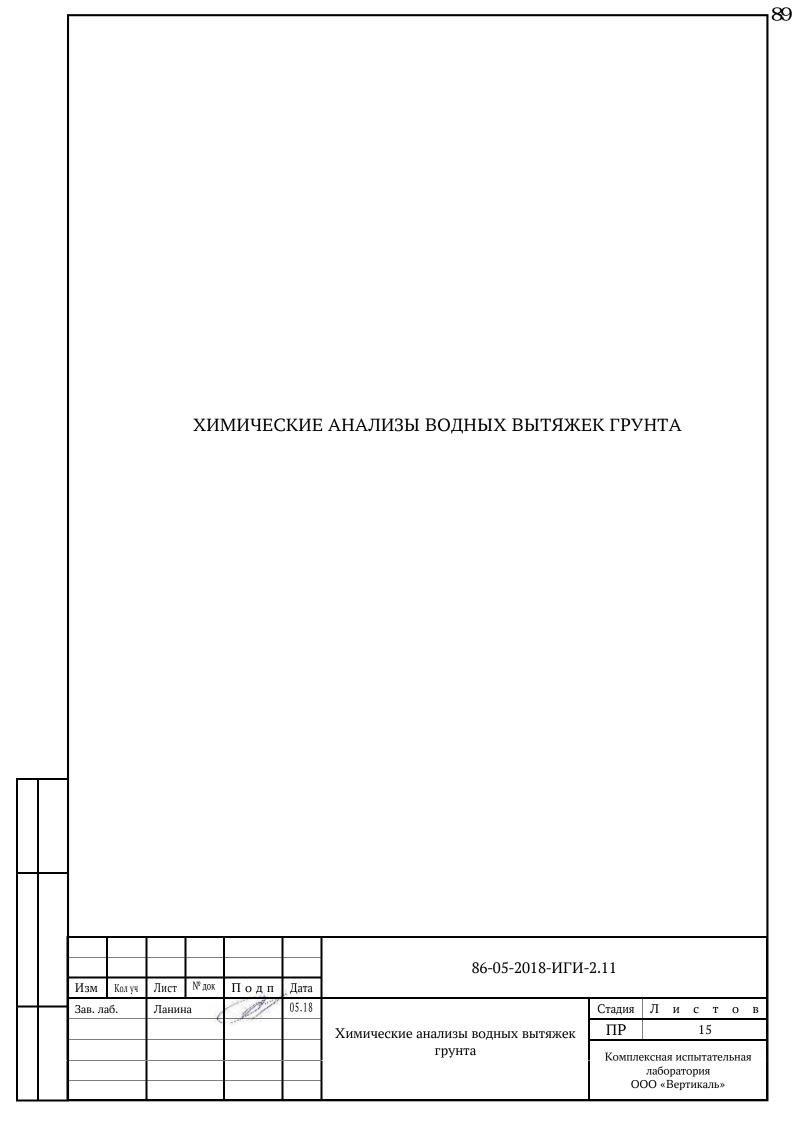
	: 7	00 – 8,20				:	394				
: 4	:										
		72 . 35 .					12	248-2	2010		
> 10	10 – 5	5-2	, % 2 – 1 1 -	- 0,5	,5 – 1,25	0,25	- 0,1 0,0		0,05 – 0,01	0,01 – 0,005	< 0,005
			· ·			_	,	%		-	-
/ 3,	/ 3,	/ 3,		•					•	, %	
2,02	1,71	2,72	0,595	0,84	18	,47	32,88		18,22	14,66	0,02
жасательное напрлюкение, МПа 0.70		1 0,2 мальное напря	0,3 жение, МПа	0,4							
0,1 0,2 0,3	,	28,0 40,0 60,0	0,07 0,1 0,15	,		,					
	,	21,80 26,67									
<u> </u>	<u> </u>		 								
			\blacksquare			86-05	-2018-	-2	2.10		9

		: 11	0.50 0.70					: 398				
	: 4		3,50 – 8,70				:					
			72 . 35 .						12248-	2010		
	> 10	10 – 5	5-2	, % 2 – 1	1 – 0,5	0,5 – 0,25	- 0,2	25 –),1	0,1 - 0,05	0,05 – 0,01	0,01 - 0,005	< 0,005
									, %			
	/ 3,	/ 3,			-	· -	-				- , %	-
	2,01	1,70	2,72	0,600	0,8	3	18,20	3	2,95	17,45	15,50	0,05
	7,0 0,3 касательное капрляение, МПа 0,1 0,1		0,1 0,2 румальное напр	О,; эжение, М1	3 0,4 Па							
	0,1 0,2 0,3	,	29,2 44,0 61,6	0,073 0,11 0,154	,		,					
		,	22,03									
-							86-	05-20	18-	-2.10		10

	: 12						: 265				
: 4	, :6	,30 – 6,50				:					
. 4	:										
		70						12240 (2010		
		72 . 35 .						12248-2	2010		
. 10	10. 7	<i>5</i> 0	, %	1 0.5	0,5	- 0,25	<u> </u>),1 –	0,05 –	0,01 -	. 0.005
> 10	10 – 5	5 – 2	2 – 1	1 – 0,5	0,25	5 0,1	[(0,05	0,01	0,005	< 0,005
<u>'</u>							1		·		<u>'</u>
,		,			-			, %		-	-
/ 3,	/ 3,			1		4 6 0 7	20.2			, %	0.05
2,05	1,75	2,72	0,55	1 0,	,83	16,87	28,2	_	16,13	12,08	0,06
0,4		28 48			i:						
37											
₩ 0,3											
Fore, I											
пряжение, №	*										
кое капряжение, М	*										
сательное кадряжение, М	*			1	ć.						
лжение,	*				S.						
0		,1 0,2 риальное напр	5,0	3 0,	4						
0		,1 0,2 омальное напр	5,0	3 0,	4						
0		1 0,2 омальное напр	5,0	3 0,	4						
0		,1 0,2 эмальное напр	5,0	3 0,	4						
0		омальное напр	0,3 элжения, МІ	3 0,							
0		омальное напр	0,5 элженияе, М1 -	3 0,		,					
0,1 0,2	0 0 кој	умальное напр	0,0 0,078 0,078	3 0,		,					
0,1	0 0 кој	. , , , , , , , , , , , , , , , , , , ,	0,3 0,7 0,078 0,11 0,152	3 0,		,					
0,1 0,2 0,3	0 0 жој	; 31,2 44,0 60,8	0,3 0,700 0,078 0,11 0,152	3 0,		,					
0,1 0,2 0,3	0 0 кој	. , , , , , , , , , , , , , , , , , , ,	0,3 0,700 0,078 0,11 0,152	3 0,		,					
0,1 0,2 0,3	0 0 кој	; 31,2 44,0 60,8	0,3 0,700 0,078 0,11 0,152	3 0,							
0,1 0,2 0,3	0 0 кој	; 31,2 44,0 60,8	0,3 0,700 0,078 0,11 0,152	3 0,		,	5-2018-		2.10		

	: 13						400				
: 4	, :6	50 – 6,70				:					
		72 . 35 .	, %				122	248-201	0		
> 10	10 – 5	5-2		1 – 0,5	0,5 – 0,25	0,25	- 0,1 0,0	5	0,05 – 0,01	0,01 - 0,005	< 0,005
, 3,	/ 3,	/ 3,			·	-	, '	%		- , %	-
2,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0		,1 0,2 рмальное напр.	0,3	0,4							
0,1 0,2 0,3		28,8 40,0 60,0	0,072 0,1 0,15			,					
	,	21,31									
	1 1		 								

	: 1					:	284			
: 6		5,00 – 15,2 :	0			:				
		72 . 35 .	07				1224	8-2010		
> 10	10 – 5	5 – 2	, % 2 – 1	1 – 0,5	0,5 – 0,25	0,25 - 0,1	- 0,1 - 0,05	0,05 – 0,01	0,01 - 0,005	< 0,005
/ 3	, 3,	/ 3	,		·	-	, %		- ,	-
2,08	1,81	2,72	0,500	6 0,8	31	15,13	31,31	14,97	% 16,34	0,01
касалення мирижение, МПа 0,2	0 0	,1 О,	пряжение, М	3 0,4						
0,1	,	31,6 46,0 63,6	0,079 0,115 0,159		,	,				
0,3		21,8								
0,3	,	37,0								


:2	70		: 242				
, : 17,50 – 17,7 : 6 :			:				
72 . 35 .	0/			12248-2	2010		
> 10 10 - 5 5 - 2	, % 2-1 1-0,5	0,5 - 0,25	0,25 – 0,1	0,1 - 0,05	0,05 – 0,01	0,01 - 0,005	< 0,005
2,09 1,77 2,72			- 17 32	, %	17,84	, % 15,00	0,02
0,4 (жильное или) од (пр. 10 г.) о	,2 0,3 0 пржение, МПа						
0,1 32,0 0,2 47,6 0,3 64,8		· , , , , , , , , , , , , , , , , , , ,	, 				
			86-05-20	182	2.10		14

	: 2					:	243			
: 6	, : 20	0,00 – 20,20				:				
		72 . 35 .	0.4				1224	48-2010		
> 10	10 – 5	5 – 2	, % 2 – 1	1 – 0,5	0,5 – 0,25	0,25	- 0,1 - 0,05	0,05 - 0,01	0,01 – 0,005	< 0,005
, 3	, 3,	/ 3					, %		- ,	-
2,10	1,79	2,72	0,510	5 0,9	0	17,08	28,90	14,75	% 14,15	0,16
хасатепьное имприжение, МПа 0,1	0 0	,1 0,2 рмальное нап	ряжение, Мі	3 0,4						
0,1 0,2 0,3	,	32,4 47,2 64,0	0,081 0,118 0,16		,	,				
	,	21,5								
	, ,									
						86-05	-2018-	-2.10		15

	: 5					:	435			
: 6	, : 20	0,10 – 20,30				:				
			·	·						
		72 . 35 .					122	248-2010		
> 10	10 – 5	5-2	, % 2 – 1	1 – 0,5	0,5 – 0,25	0,25	0,1	- 0,05 - 0,01	0,01 - 0,005	< 0,005
, 3	, 3,	/ 3,			· -	-	,,	%	- ,	_
2,09	1,78	2,72	0,524	1 0,8	39	17,12	32,02	16,55	% 15,47	0,04
масательное напрляение, МПа 0,2	0 0	л 0,2 омальное напр	0,3 элжение, М	3 0,4						
0,1 0,2 0,3	,	30,8 44,0 62,8	0,077 0,11 0,157			,				
	,	21,80 34,6°								
	, , ,									
						86-05	-2018-	-2.10		16

	: 5						436					
: 6	, : 23	3,00 – 23,20				:						
		•	•	•								
		72 . 35 .	0/					12248-2	2010			
> 10	10 – 5	5-2	, % 2 – 1	1 – 0,5	0,5 – 0,25	0,25	_	0,1 - 0,05	0,05 – 0,01	0,01 – 0,005	< 0,005	
/ 3,	, 3,	/ 3,			-	-		, %		-,	-	
2,08	1,76	2,72	0,543	0,90)	18,01	32,	52	17,22	% 15,30	0,05	
касательное капрлжение, МПа		л 0,2 рмальное напрж	0,3	.0,4								
0,1	2	47,2),082),118),158	,		,						
	,	20,81 43,33										
						86-05	5-2018	8	2.10		1	17

	: 9	5,50 – 15,70	1			:	442			
: 6	:					•				
		72 . 35 .	0/				12	248-2010		
> 10	10 – 5	5 – 2	, % 2 – 1	1 – 0,5	0,5 – 0,25	0,25	- 0,1 0,0	- 0,05 - 0,01	0,01 - 0,005	< 0,005
/ 3,	/ 3,	/ 3,			-	-	,	%	, , %	-
0,4 - 1,0 0,3 -	0,		0,3 ряжение, МП	3 0,4						
0,1 0,2 0,3	,	32,0 48,0 64,0	0,08 0,12 0,16		,	,				
	,	21,80								
						86-05	-2018-	-2.10		18

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9/0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
NO_3 $Na+K$	
,% (),% ,%	
(),% . , * () , , * ()	
pH 7,7	
25100-2011 . 34.13330.2012	
34.13330.2012 .	
9.602-2016	
>	
. ()	
31384-2008 W4 W6 W8 W10-W14 W	W16-W20
	110-1120
-	
86-05-20182.11	1

					35	52 : 4 , 2 1	: 2,20 – 2,40 ::5		
					100				
	HCO_3 Cl SO_4 NO_3 CO_3	3,55 10,23	0,10 0,21	0,00 0,01	Ca Mg Fe Na+K		•	%	
		(, %), % , % pH	7,6		·	, / ² ()		
	34	25100-2011 .13330.2012				9.602-			
			- . ()						
						31384-2008			
-		-	-	W4	W6	W8	W10-W14	W16-W20	0
		/							
					86-05-2	20182.1	1		2

				35	57 :8 , 2	: 1,70 – 1,90 ::5	
HCO_3 Cl SO_4 NO_3 CO_3	7,09 15,20	0,20 0,32	9% 0,01 0,02	100 Ca Mg Fe Na+K		-	%
	25100-2011	, %), % , % pH	7,8		34.13330.2012	, / ² ()	
34.	13330.2012				9.602-		
		. ()					
			W4	W6	31384-2008 W8	W10-W14	W16-W20
	/						
			-	86-05-2	20182.1	1	3

					75 : 11 ,	: 1,50 – 1,70 3 ::5	
HCO_3 Cl SO_4 NO_3 CO_3	3,55 13,36	- 0,10 0,28	% 0,00 0,01	100 Ca Mg Fe Na+K		•	%
	(, %), % , % pH	7,7			, / ² ()	
34.1	5100-2011 3330.2012				34.13330.2012 9.602-		
		- . ()					
			W4	W6	31384-2008 W8	W10-W14	W16-W20
,	-						
		·	-	86-05-2	20182.1	1	4

			26	: 12	: 3,20 – 3,40 3 1:5	
HCO ₃ Cl 5,32 SO ₄ 12,20 NO ₃ CO ₃	- 0,15 0,25 , %), % , % pH 7,	% 0,01 0,01	Ca Mg Fe Na+K		, / ² ()	9/6
25100-2011 34.13330.2012	- - ()			9.602-		
-		W4	W6	31384-2008 W8	W10-W14	W16-W20
			86-05-2	0182.1	11	5

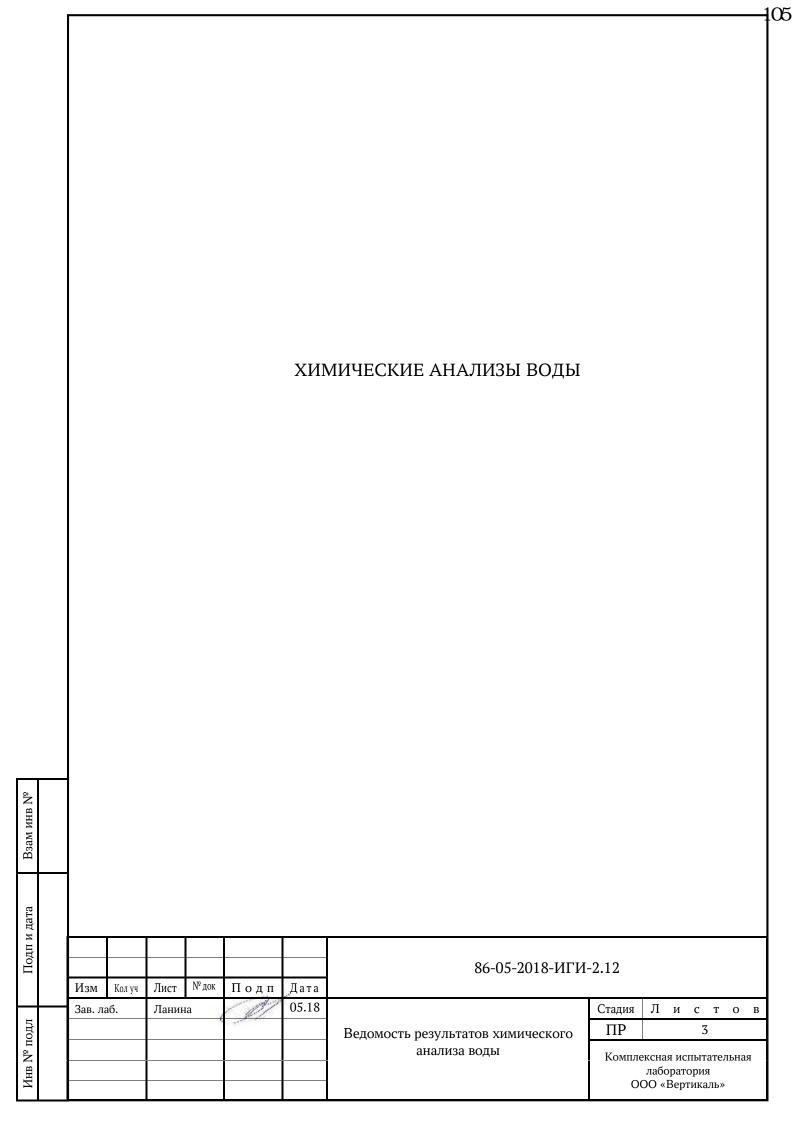
					38	. 14	2,00 – 2,20 3 :5	
	HCO_3 Cl SO_4 NO_3 CO_3	3,55 12,25	0,10 0,26	% 0,00 0,01	100 Ca Mg Fe Na+K		-	0/0
		(, %), % , % pH	8,0			, / ² () , * ()	
	34	25100-2011 4.13330.2012				34.13330.2012 9.602-	2016	
			- - . ()					
				W4	W6	31384-2008 W8	W10-W14	W16-W20
		/						
-					86-05-2	.0182.1	1	6

					54 : 12 ,	: 6,00 – 6,20 4 ::5	
			%	100			%
HCO_3 Cl SO_4 NO_3 CO_3	7,09 16,36	0,20 0,34	0,01	Ca Mg Fe Na+K		-	70
	(, %), % , % pH	7,8			, / ² ()	
34	25100-2011 1.13330.2012				34.13330.2012		
					9.602-	2016	
		-					
		. ()					
					31384-2008		
	-		W4	W6	W8	W10-W14	W16-W20
	/						
				86-05-2	20182.1	1	7

399	
: 13	
, : 5,50 – 5,70 : 4	
1:5	
100	,
HCO ₃ - % Ca	%
Cl 7,09 0,20 0,01 Mg	
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
CO_3	
, %	
(),% . , * ()	
, % pH 7,9	
25100-2011 . 34.13330.2012 34.13330.2012 .	
34.13330.2012	
9.602-2016	
-	
_	
. ()	
21224 2222	
31384-2008	W47 W40
W4 W6 W8 W10-W14	W16-W20
-	
┪	
25.25.2010	<u> </u>
86-05-20182.11	8

				25	: 16	5,00 – 5,20 4 :5	
HCO_3 Cl SO_4 NO_3 CO_3	7,09 13,36	- 0,20 0,28	% 0,01 0,01	100 Ca Mg Fe Na+K		-	9/0
	(, %), % , % pH	7,9			, / ² ()	
34	25100-2011 4.13330.2012				34.13330.2012 9.602-		
		- - . ()					
			W4	W6	31384-2008 W8	W10-W14	W16-W20
	/						
				86-05-2	0182.1	1	9

					41 :	. 11	10,00 – 10,20 :5	
	HCO_3 Cl SO_4 NO_3 CO_3	5,32 13,25	- 0,15 0,28	0,01 0,01	100 Ca Mg Fe Na+K		-	%
		(, %), % , % pH	7,7			, / ² ()	
	34	25100-2011 4.13330.2012				34.13330.2012 9.602-	2016	
			- - . ()					
		T		W4	W6	31384-2008 W8	W10-W14	W16-W20
		/						
-					86-05-2	0182.1	1	10


					41	22		
						: 13	: 9,00 – 9,20 1:5	
					100			
	HCO ₃	2.55	-	%	Са		-	%
	SO ₄ NO ₃	10,23	0,10	0,00	Fe Na+K			
	CO3	(, %), %				, / ² ()	
			pН	7,9				
	34	25100-2011 1.13330.2012				34.13330.2012		
						9.602-	-2016	
			-					
			. ()					
						31384-2008		
4				W4	W6	W8	W10-W14	W16-W20
100 100								
:13								
	<u>, , , , , , , , , , , , , , , , , , , </u>	100 100	r					
				-	86-05-2	20182.1	11	11

						: 16	: 8,50 – 8,70 l:5		
					100				
	HCO_3 Cl SO_4 NO_3 CO_3	7,09 13,32	0,20 0,28	% 0,01 0,01	Ca Mg Fe Na+K		-	%	
		(, %), % , % pH	7,8			, * ()		
	34	25100-2011 13330.2012							
		CO ₃ Cl 7,09 0,20 0 SO ₄ 13,32 0,28 0 NO ₃ CO ₃ , % (), % pH 7,8							
		Too		31384-2008					
-		### Description of the image of			W6	W8	W10-W14	W16-W	20
	100 100								
16									
C 7,09 0,20 0,01 M SO ₄ 13,32 0,28 0,01 Na SO ₄ 13,32 0,28 0,01 Na SO ₄ 13,32 0,28 0,01 Na SO ₄ 13,33 Na SO ₄ 13,33 Na SO ₄ 13,33 Na SO ₄ 13,33 Na SO ₅ Na Na SO ₅ Na Na Na Na Na Na Na N		86-05-2	20182.1	11		12			

					40			
					:	. 12	: 13,00 – 13,20	
						-	1:5	
					100			
	HCO		-	%	Ca		-	%
	Cl	3,55	0,10	0,00	Mg			
	NO_3	12,20	0,23	0,01	Na+K			
			, %				, / 2()	
		(), %			•	, * ()	
			рН	7,9				
	34	25100-2011 I.13330.2012				34.13330.2012		
						9.602	-2016	
			-					
			()					
				XX/4	W		W/10 W/14	W16 W20
4				W4	VVO	VV O	W10-W14	W10-W20
			•					
		/						
-								
HCO ₃								
: 12								
L								
				<u> </u>	86-05-2	20182.2	11	13

				:	59 : 14 , 7	: 13,00 – 13,20 1:5			
		100							
HCO_3 Cl SO_4 NO_3 CO_3	3,55 12,25	0,10 0,26	% 0,00 0,01	Ca Mg Fe Na+K		-	%		
	(, %), % , % pH	7,7			. , / ² ()			
32	25100-2011 4.13330.2012				34.13330.2012	2			
					9.602	-2016			
		-							
		. ()							
		-		l	31384-2008	l			
<u> </u>			W4	W6	W8	W10-W14	W16-W20		
	/	-							
<u> </u>	, , , , , , , , , , , , , , , , , , , 		1				ı		
				86-05-2	20182.	11			

		1:5 100							
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
					26				
		Cl 5,32 SO ₄ 13,30 NO ₃ CO ₃				: 16	· 12 00 _ 12 20		
### CO3		:	7	. 12,00 – 12,20					
100	1	:5							
				100					
			-	%			-	%	
	HCO ₃	5.00	0.15	0.01					
	NO_3	10,00	0,20	3,01					
	CO_3								
			, %				, / 2()		
		(), %				, * ()		
				7.8					
			r	7,0		: 16 ; : 12,00 - 12,20 ; : 7 1:5 Ca			
)	
		25100-2011		: 16 : 12,00 - 12,20 : 7 1:5 100					
		34.13330.2012				: 16 : 12,00 - 12,20 : 7 1:5 34.13330.2012 9.602-2016			
						0.602	2016		
						9.002-	-2010		
			-)))	
			-	-					
			. ()						
			()						
			1:5 100 Ca						
						21201 2000			
					1		*****	****	
				W4	W6	W8	W10-W14	W16-W	20
			-						
		,	100 100						
		/		: 16 :					
		3 5,32 0,15 0 13,30 0,28 0 , % , % , pH 7,8 25100-2011							
				4	86-05-2	20182.1	1		15

					285			
	:1	3,30						
	/	- /	% -			/	- /	% -
HCO_3	610,20	10,00	46,82	Ca	19	96,39	9,80	45,88
Cl	297,78	8,40	39,32	Mg		38,88	3,20	14,98
SO_4 NO_3	142,20	2,96	13,86	Fe NH ₄				
CO_3				Na+R		92,28	8,36	39,14
		, /	1477,73				- /	•
	(), /	1172,63		0	1	13,00	36,40
	(), /	578,52				10,00	28,00
	CO ₂	., - /	10,00				3,00	8,40
		, /			31384-	2008	pH /	7,8
				W4	W6		W8	W10-W1
	SO_4	_						
	~ ~ 4							
/								
						0.602.2	016	
						9.602-2	016	
						9.602-2	016	
						9.602-2	016	
			-			9.602-2	016	
						9.602-2	016	
			-			9.602-2	016	
			- - HCO3	47 Cl 39 [SO4	14]			
		M 0,6 —	- - HCO3	47 Cl 39 [SO4 46 Na 39 [Mg 15	14]	9.602-2		
	:		- - HCO3	46 Na 39 [Mg 15	14]	—— pH7	7,8	
			- - HCO3	46 Na 39 [Mg 15	14]	—— pH7	7,8	
/			- - HCO3	46 Na 39 [Mg 15	14]	—— pH7	7,8	
/			- - HCO3	46 Na 39 [Mg 15	14]	—— pH7	7,8	
/			- - HCO3	46 Na 39 [Mg 15	14]	—— pH7	7,8	
/			- - HCO3	46 Na 39 [Mg 15	14]	—— pH7	7,8	
			- - HCO3	46 Na 39 [Mg 15	14]	—— pH7	7,8	
			- - HCO3	46 Na 39 [Mg 15	14]	—— pH7	7,8	

:	6 , :	2,90			473				
HCO ₃ Cl SO ₄	/ 652,23 252,20 140,20	- / 10,69 7,11 2,92	% - 51,58 34,33 14,09	Co M,	g	/ 201,23 40,25	- / 10,04 3,31	% - 48,40 15,99	6
NO_3 CO_3				NH Na-		169,51	7,37	35,50	6
	((CO ₂	, /), /), / ., /	1455,62 1129,50 785,25		(0	- / 13,35 10,69 2,67	37,39 29,93 7,46	•
		, /	10,07	W4	31	384-2008 W6	pH W8	7,9 W10-W	710
/	504					9.602-	2016		
			-						
		М 0,8 —		5 52 Cl 34 [SO4 48 Na 36 [Mg		pI	I7,9		
)	:	-		-	,	,	(
				86-0	05-201	82.1	2		F

	: 15	6,00			474				
HCO_3 Cl SO_4 NO_3 CO_3	/ 702,25 289,63 152,36	- / 11,51 8,17 3,17	% - 50,37 35,75 13,88	M H N	Ca Mg Fe H ₄	/ 188,52 35,20 242,42	- / 9,41 2,90	% - 41,18 12,68 46,14	3
	((CO ₂	, /), /), / ., / ., - /	1610,38 1259,26 805,23 11,51			0	- / 12,30 11,51 0,80	34,45 32,22 2,23 8,0	
				W4	31	W6	W8	W10-W	12
/	SO ₄	_							
						9.602	-2016		
			-						
			-						_
		M 0,8 —		3 50 Cl 36 [SO 46 Ca 41 [Mg -	13]	p)	H8,0 (
,	:								
)	:								

Результаты определений удельного электрического сопротивления и плотности катодного тока грунта в лабораторных условиях на приборе «АКАГ»

грунта	(выработки)	пробы, м.	элен	дельное ктрическое вление грунта	П	лотност	ь катодн	ого тока	, мА/м ²	иной
Номер образца г	№ Скважины (выра	Глубина отбора пр	Показание прибора р₀, Ом∙м	Коррозионная агрессивность грунта	Ячейка №1	Ячейка №2	Ячейка №3	Среднее значение	Коррозионная агрессивность грунта	Оценка коррозионной агрессивности
481	11	1,5	12	Высокая	225	230	232	229	Высокая	Высокая
482	14	1,5	13	Высокая	200	195	210	202	Высокая	Высокая
483	15	1,5	15	Высокая	198	200	204	201	Высокая	Высокая

Ведомость определений удельного электрического сопротивления грунта в полевых условиях прибором Φ 4103-M1 с использованием четырех электродной установки AMNB

Номер пункта измерения номер скважины	Расстояние между электродами, глубина определения УЭС), м	Измеренное электрическое сопротивление грунта (R) г.п,	Удельное электрическое сопротивление грунта (ро), Ом ·м	Коррозионная агрессивность грунта
К-1 У скв №14	1,5	1,3	12,3	Высокая
К-2 У скв №14	1,5	1,4	13,2	Высокая
К-3 У скв №15	1,5	1,6	15,1	Высокая

							86-05-2018-ИГИ	-2.13		
L	Изм	Кол уч	Лист	№ док	Подп	Дата				
┪	Зав. лаб. Ланина		Ланина 🥻 🧷		05.18	Ведомость лабораторного и полевого	Стадия	Лист	Листов	
ı	Геолог		Лукьянова		11	05.18	определения коррозионной	ПР		1
	Нач.отдела		Лукьянова		05.18		агрессивности грунтов по отношению к стальным подземным сооружениям	Комплексная испытательная лаборатория ООО «Вертикаль»		

Журнал статического зондирования Точка статического зондирования N° : 1, скв. N° 1 зонд: II

Глубина	q_c	$\mathbf{f_S}$	Глубина	q_c	$\mathbf{f_S}$	Глубина	q_c	f_S
3.5	3.8	180.0	6.7			9.9	2.7	106.0
3.6	3.5	182.0	6.8			10.0	2.8	130.0
3.7	3.8	179.0	6.9			10.1	2.6	130.0
3.8	3.7	178.0	7.0			10.2	2.4	131.0
3.9	3.8	190.0	7.1			10.3	2.2	125.0
4.0	3.7	163.0	7.2			10.4	2.6	138.0
4.1	4.0	196.0	7.3	Разбур	ивание	10.5	17.5	176.0
4.2	3.6	200.0	7.4			10.6	18.6	185.0
4.3	4.1	178.0	7.5			10.7	20.1	196.0
4.4	3.6	183.0	7.6			10.8	19.8	178.0
4.5	3.7	193.0	7.7			10.9	16.5	187.0
4.6	3.8	202.0	7.8			11.0	18.3	168.0
4.7	3.6	220.0	7.9			11.1	17.4	156.0
4.8	3.6	210.0	8.0	2.8	159.0	11.2	15.5	143.0
4.9	3.9	174.0	8.1	2.3 116.0		11.3	11.3	85.0
5.0	3.8	172.0	8.2	2.6	152.0	11.4	17.8	93.0
5.1	3.9	172.0	8.3	2.5	162.0	11.5	3.5	124.0
5.2	3.8	172.0	8.4	2.3	164.0	11.6	3.6	143.0
5.3			8.5	2.2	154.0	11.7	3.1	152.0
5.4			8.6	2.3	148.0	11.8	4.0	178.0
5.5			8.7	2.2	137.0	11.9	4.2	193.0
5.6			8.8	2.2	139.0	12.0	3.9	195.0
5.7			8.9	2.5	152.0	12.1	3.9	208.0
5.8			9.0	2.6	160.0	12.2	4.0	214.0
5.9	Daastra	ивание	9.1	2.9	185.0	12.3	3.7	225.0
6.0	Разоур	ивание	9.2	1.9	169.0	12.4	3.8	244.0
6.1			9.3	1.9	161.0	12.5	3.8	123.0
6.2			9.4	2.5	116.0	12.6	3.9	178.0
6.3			9.5	1.9	158.0	12.7	3.6	180.0
6.4			9.6	2.0	154.0	12.8	4.0	198.0
6.5			9.7	2.3	152.0	12.9	4.1	200.0
6.6			9.8	2.2	185.0	13.0	15.0	172.0

Инв № по					gr.		Результаты статического зондирования		О «Верті	ікаль»			
подл	Нач.о	тдела	Лукья	нова	4	05.18					П	1	31
	Геоло	Γ	Лукья	нова	14	05.18					Стадия	Лист	Листов
	Изм	Кол уч	Лист	№ док	Подп	Дата							
Подп								86	5-05-20	18-ИГИ	-2.14		
і и дата		I	1	<u> </u>		<u> </u>							
				0.0			7.0	2.2	105.0	13.0	13.0	172.0	_

Глубина	q_c	f_S	Глубина	q_c	f_s	Глубина	q_c	f_S
13.1	15.5	143.0	16.3			19.5	18.8	205.0
13.2	21.1	155.0	16.4			19.6	24.8	224.0
13.3	21.8	163.0	16.5			19.7	27.6	256.0
13.4	20.5	163.0	16.6			19.8	21.2	172.0
13.5			16.7			19.9	28.8	188.0
13.6			16.8			20.0	33.5	194.0
13.7			16.9					
13.8			17.0					
13.9	Разбур	ивание	17.1					
14.0			17.2					
14.1			17.3					
14.2			17.4					
14.3			17.5					
14.4	4.0	172.0	17.6					
14.5	3.7	165.0	17.7	ı				
14.6	3.8	194.0	17.8	D. C.				
14.7	3.9	188.0	17.9	Разоур	ивание			
14.8	3.6	209.0	18.0					
14.9	4.3	190.0	18.1					
15.0	3.8	214.0	18.2					
15.1			18.3					
15.2			18.4					
15.3			18.5					
15.4			18.6					
15.5			18.7					
15.6	D 6		18.8					
15.7	Разбур	ивание	18.9					
15.8			19.0					
15.9			19.1					
16.0			19.2					
16.1			19.3					
16.2			19.4					

Инв \mathbb{N}^{g} подл Подп и дата Взам инв \mathbb{N}^{g}

Изм	Кол уч	Лист	№док	Подпись	Дата

Журнал статического зондирования Точка статического зондирования №: 2, скв.№4 зонд: II

1.9 8.4 72.0 5.1 2.0 8.9 88.0 5.2 2.1 10.3 60.0 5.3 2.2 7.6 73.0 5.4 2.3 6.4 57.0 5.5 2.4 9.7 60.0 5.6 2.5 7.8 55.0 5.7 2.6 5.4 52.0 5.8 2.7 4.2 60.0 5.9 2.8 2.0 75.0 6.0 3.5 188.0 9.2 2.6 2.9 4.8 51.0 6.1 3.7 190.0 9.3 2.4 3.0 5.6 47.0 6.2 3.8 189.0 9.4 2.2 3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0	155.0 152.0 162.0 137.0 152.0 160.0 150.0 137.0 139.0 164.0		
1.7 5.9 58.0 4.9 1.8 6.4 55.0 5.0 1.9 8.4 72.0 5.1 2.0 8.9 88.0 5.2 2.1 10.3 60.0 5.3 2.2 7.6 73.0 5.4 2.3 6.4 57.0 5.5 2.4 9.7 60.0 5.6 2.5 7.8 55.0 5.7 2.6 5.4 52.0 5.8 2.7 4.2 60.0 5.9 2.8 2.0 75.0 6.0 3.5 188.0 9.2 2.6 2.9 4.8 51.0 6.1 3.7 190.0 9.3 2.4 3.0 5.6 47.0 6.2 3.8 189.0 9.4 2.2 3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0	155.0 152.0 162.0 137.0 152.0 160.0 150.0 137.0 139.0 164.0		
1.8 6.4 55.0 5.0 1.9 8.4 72.0 5.1 2.0 8.9 88.0 5.2 2.1 10.3 60.0 5.3 2.2 7.6 73.0 5.4 2.3 6.4 57.0 5.5 2.4 9.7 60.0 5.6 2.5 7.8 55.0 5.7 2.6 5.4 52.0 5.8 2.7 4.2 60.0 5.9 2.8 2.0 75.0 6.0 3.5 188.0 9.2 2.6 2.9 4.8 51.0 6.1 3.7 190.0 9.3 2.4 3.0 5.6 47.0 6.2 3.8 189.0 9.4 2.2 3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0	152.0 162.0 137.0 152.0 160.0 150.0 137.0 139.0		
1.9 8.4 72.0 5.1 2.0 8.9 88.0 5.2 2.1 10.3 60.0 5.3 2.2 7.6 73.0 5.4 2.3 6.4 57.0 5.5 2.4 9.7 60.0 5.6 2.5 7.8 55.0 5.7 2.6 5.4 52.0 5.8 2.7 4.2 60.0 5.9 2.8 2.0 75.0 6.0 3.5 188.0 9.2 2.6 2.9 4.8 51.0 6.1 3.7 190.0 9.3 2.4 3.0 5.6 47.0 6.2 3.8 189.0 9.4 2.2 3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0	152.0 162.0 137.0 152.0 160.0 150.0 137.0 139.0		
2.0 8.9 88.0 5.2 2.1 10.3 60.0 5.3 Разбуривание 8.5 2.2 2.2 7.6 73.0 5.4 8.6 2.5 2.3 6.4 57.0 5.5 8.7 2.6 2.4 9.7 60.0 5.6 8.8 2.3 2.5 7.8 55.0 5.7 8.9 2.3 2.6 5.4 52.0 5.8 9.0 2.5 2.7 4.2 60.0 5.9 9.1 2.3 2.8 2.0 75.0 6.0 3.5 188.0 9.2 2.6 2.9 4.8 51.0 6.1 3.7 190.0 9.3 2.4 3.0 5.6 47.0 6.2 3.8 189.0 9.4 2.2 3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0	162.0 137.0 152.0 160.0 150.0 137.0 139.0		
2.1 10.3 60.0 5.3 Разбуривание 8.5 2.2 2.2 7.6 73.0 5.4 8.6 2.5 2.3 6.4 57.0 5.5 8.7 2.6 2.4 9.7 60.0 5.6 8.8 2.3 2.5 7.8 55.0 5.7 8.9 2.3 2.6 5.4 52.0 5.8 9.0 2.5 2.7 4.2 60.0 5.9 9.1 2.3 2.8 2.0 75.0 6.0 3.5 188.0 9.2 2.6 2.9 4.8 51.0 6.1 3.7 190.0 9.3 2.4 3.0 5.6 47.0 6.2 3.8 189.0 9.4 2.2 3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0	137.0 152.0 160.0 150.0 137.0 139.0		
2.2 7.6 73.0 5.4 2.3 6.4 57.0 5.5 2.4 9.7 60.0 5.6 2.5 7.8 55.0 5.7 2.6 5.4 52.0 5.8 2.7 4.2 60.0 5.9 2.8 2.0 75.0 6.0 2.9 4.8 51.0 6.1 3.7 190.0 9.3 2.4 3.0 5.6 47.0 6.2 3.8 189.0 9.4 2.2 3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0	152.0 160.0 150.0 137.0 139.0		
2.3 6.4 57.0 5.5 2.4 9.7 60.0 5.6 2.5 7.8 55.0 5.7 2.6 5.4 52.0 5.8 2.7 4.2 60.0 5.9 2.8 2.0 75.0 6.0 3.5 188.0 9.2 2.6 2.9 4.8 51.0 6.1 3.7 190.0 9.3 2.4 3.0 3.0 5.6 47.0 6.2 3.8 189.0 9.4 2.2 3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0	160.0 150.0 137.0 139.0 164.0		
2.4 9.7 60.0 5.6 2.5 7.8 55.0 5.7 2.6 5.4 52.0 5.8 2.7 4.2 60.0 5.9 2.8 2.0 75.0 6.0 3.5 188.0 9.2 2.6 2.9 4.8 51.0 6.1 3.7 190.0 9.3 2.4 3.0 5.6 47.0 6.2 3.8 189.0 9.4 2.2 3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0	150.0 137.0 139.0 164.0		
2.5 7.8 55.0 5.7 2.6 5.4 52.0 5.8 2.7 4.2 60.0 5.9 2.8 2.0 75.0 6.0 3.5 188.0 9.2 2.6 2.9 4.8 51.0 6.1 3.7 190.0 9.3 2.4 3.0 5.6 47.0 6.2 3.8 189.0 9.4 2.2 3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0	137.0 139.0 164.0		
2.6 5.4 52.0 5.8 9.0 2.5 2.7 4.2 60.0 5.9 9.1 2.3 2.8 2.0 75.0 6.0 3.5 188.0 9.2 2.6 2.9 4.8 51.0 6.1 3.7 190.0 9.3 2.4 3.0 5.6 47.0 6.2 3.8 189.0 9.4 2.2 3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0	139.0 164.0		
2.7 4.2 60.0 5.9 9.1 2.3 2.8 2.0 75.0 6.0 3.5 188.0 9.2 2.6 2.9 4.8 51.0 6.1 3.7 190.0 9.3 2.4 3.0 5.6 47.0 6.2 3.8 189.0 9.4 2.2 3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0	164.0		
2.8 2.0 75.0 6.0 3.5 188.0 9.2 2.6 2.9 4.8 51.0 6.1 3.7 190.0 9.3 2.4 3.0 5.6 47.0 6.2 3.8 189.0 9.4 2.2 3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0			
2.9 4.8 51.0 6.1 3.7 190.0 9.3 2.4 3.0 5.6 47.0 6.2 3.8 189.0 9.4 2.2 3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0			
3.0 5.6 47.0 6.2 3.8 189.0 9.4 2.2 3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0	161.0		
3.1 6.3 3.6 195.0 9.5 15.4 3.2 6.4 3.7 201.0 9.6 16.0	118.0		
3.2 6.4 3.7 201.0 9.6 16.0	124.0		
	175.0		
3.3 6.5 3.8 229.0 9.7 17.5 3.8	168.0		
	148.0		
3.4 6.6 3.5 182.0 9.8 21.8	153.0		
3.5 6.7 3.7 178.0 9.9 22.0	175.0		
3.6 6.8 3.9 200.0 10.0			
3.7 6.9 3.9 178.0 10.1			
3.8 Разбуривание 7.0 4.0 193.0 10.2			
3.9 7.1 10.3			
4.0 7.2 10.4			
4.1 7.3 10.5 Разбурив	зание		
7.4 Page Syryyrayyra 10.6			
4.3 Разбуривание 10.7			
4.4 7.6 10.8			
4.5 7.7 10.9			
4.6 7.8 11.0			

Взам инв N^{9}	
Подп и дата	
нв Nº подл	

Изм	Кол уч	Лист	№док	Подпись	Дата

Глубина	q_c	f_S	Глубина	q_c	f_s	Глубина	q_c	fs
11.1			14.3			17.5	15.7	153.0
11.2			14.4			17.6	22.8	184.0
11.3			14.5			17.7	28.6	188.0
11.4			14.6			17.8	30.4	208.0
11.5			14.7					
11.6			14.8					
11.7			14.9					
11.8			15.0					
11.9			15.1					
12.0			15.2					
12.1			15.3					
12.2			15.4					
12.3	Разбур	ивание	15.5					
12.4			15.6					
12.5			15.7					
12.6			15.8					
12.7			15.9	Разбуривание				
12.8			16.0					
12.9			16.1					
13.0			16.2					
13.1			16.3					
13.2			16.4					
13.3			16.5					
13.4			16.6					
13.5	4.0	194.0	16.7					
13.6	4.1	193.0	16.8					
13.7	3.9	193.0	16.9					
13.8	3.8	183.0	17.0					
13.9	4.0	188.0	17.1					
14.0		1	17.2					
14.1	Разбур	ивание	17.3					
14.2			17.4					

Инв № подл Подп и дата Взам инв №

Изм	Кол уч	Лист	№док	Подпись	Дата

Журнал статического зондирования Точка статического зондирования N° :3, скв. N° 8 зонд: II

1.5 2.2 80.0 4.7 1.6 4.7 53.0 4.8 1.7 5.2 46.0 4.9 1.8 7.1 40.0 5.0 1.9 9.2 65.0 5.1 2.0 9.5 72.0 5.2 2.1 8.4 59.0 5.3 2.2 4.2 45.0 5.4 2.3 5.2 60.0 5.5 2.4 7.8 55.0 5.6 2.5 5.4 55.0 5.7 2.6 8.4 72.0 5.8 2.7 5.9 58.0 5.9 2.8 4.5 58.0 6.0 2.9 3.7 182.0 6.1 3.0 3.8 184.0 6.2 2.7 129.0 9.4 3.1 3.8 190.0 6.3 2.7 132.0 9.5 3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.6 209.0 6.5 2.7 131.0 <th>Глубина</th> <th>q_c</th> <th>f_S</th> <th>Глубина</th> <th>q_c</th> <th>f_S</th> <th>Глубина</th> <th>q_c</th> <th>f_s</th>	Глубина	q_c	f_S	Глубина	q_c	f_S	Глубина	q_c	f _s	
1.7 5.2 46.0 4.9 1.8 7.1 40.0 5.0 1.9 9.2 65.0 5.1 2.0 9.5 72.0 5.2 2.1 8.4 59.0 5.3 2.2 4.2 45.0 5.4 2.3 5.2 60.0 5.5 2.4 7.8 55.0 5.6 2.5 5.4 55.0 5.7 2.6 8.4 72.0 5.8 2.7 5.9 58.0 5.9 2.8 4.5 58.0 6.0 2.9 3.7 182.0 6.1 3.0 3.8 184.0 6.2 2.7 129.0 9.4 3.1 3.8 190.0 6.3 2.7 132.0 9.5 3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.6 209.0 6.5 2.7 131.0 9.7 3.4 3.8 182.0 6.6 2.6 135.0 9.8	1.5	2.2	80.0	4.7			7.9			
1.8 7.1 40.0 5.0 1.9 9.2 65.0 5.1 2.0 9.5 72.0 5.2 2.1 8.4 59.0 5.3 2.2 4.2 45.0 5.4 2.3 5.2 60.0 5.5 2.4 7.8 55.0 5.6 2.5 5.4 55.0 5.7 2.6 8.4 72.0 5.8 2.7 5.9 58.0 5.9 2.8 4.5 58.0 6.0 2.9 3.7 182.0 6.1 3.0 3.8 184.0 6.2 2.7 129.0 9.4 3.1 3.8 190.0 6.3 2.7 132.0 9.5 3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.6 209.0 6.5 2.7 131.0 9.7 3.4 3.8 182.0 6.6 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6	1.6	4.7	53.0	4.8			8.0			
1.9 9.2 65.0 5.1 2.0 9.5 72.0 5.2 2.1 8.4 59.0 5.3 2.2 4.2 45.0 5.4 2.3 5.2 60.0 5.5 2.4 7.8 55.0 5.6 2.5 5.4 55.0 5.7 2.6 8.4 72.0 5.8 2.7 5.9 58.0 5.9 2.8 4.5 58.0 6.0 2.9 3.7 182.0 6.1 3.0 3.8 184.0 6.2 2.7 129.0 9.4 3.1 3.8 190.0 6.5 2.7 132.0 9.5 3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.6 209.0 6.5 2.7 131.0 9.7 3.4 3.8 182.0 6.6 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6 131.0 9.9 3.6 3.	1.7	5.2	46.0	4.9			8.1	Разбуривание		
2.0 9.5 72.0 5.2 2.1 8.4 59.0 5.3 2.2 4.2 45.0 5.4 2.3 5.2 60.0 5.5 2.4 7.8 55.0 5.6 2.5 5.4 55.0 5.7 2.6 8.4 72.0 5.8 2.7 5.9 58.0 5.9 2.8 4.5 58.0 6.0 2.9 3.7 182.0 6.1 3.0 3.8 184.0 6.2 2.7 129.0 9.4 3.1 3.8 190.0 6.3 2.7 132.0 9.5 3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.6 209.0 6.5 2.7 131.0 9.7 3.4 3.8 182.0 6.6 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6 131.0 9.9 3.6 3.7 190.0 6.8 2.4 128.0 <td< td=""><td>1.8</td><td>7.1</td><td>40.0</td><td>5.0</td><td></td><td></td><td>8.2</td></td<>	1.8	7.1	40.0	5.0			8.2			
2.1 8.4 59.0 5.3 Paзбуривание 8.5 2.2 4.2 45.0 5.4 Pasбуривание 8.6 2.3 5.2 60.0 5.5 8.7 2.4 7.8 55.0 5.6 8.8 18.6 185.0 2.5 5.4 55.0 5.7 8.9 22.0 195.0 2.6 8.4 72.0 5.8 9.0 19.0 178.0 2.7 5.9 58.0 5.9 9.1 16.5 187.0 2.8 4.5 58.0 6.0 9.2 18.3 168.0 2.9 3.7 182.0 6.1 9.3 17.4 156.0 3.0 3.8 184.0 6.2 2.7 129.0 9.4 17.4 156.0 3.1 3.8 190.0 6.3 2.7 132.0 9.5 17.4 156.0 3.2 4.3 226.0 6.4 2.8 130.0 9.6 13.1 9.7 13.4 3.8 182.0 6.6 2.6 135.0 <td>1.9</td> <td>9.2</td> <td>65.0</td> <td>5.1</td> <td></td> <td></td> <td>8.3</td>	1.9	9.2	65.0	5.1			8.3			
2.2 4.2 45.0 5.4 Разбуривание 8.6 2.3 5.2 60.0 5.5 8.7 2.4 7.8 55.0 5.6 8.8 18.6 185.0 2.5 5.4 55.0 5.7 8.9 22.0 195.0 2.6 8.4 72.0 5.8 9.0 19.0 178.0 2.7 5.9 58.0 5.9 9.1 16.5 187.0 2.8 4.5 58.0 6.0 9.2 18.3 168.0 2.9 3.7 182.0 6.1 9.3 17.4 156.0 3.0 3.8 184.0 6.2 2.7 129.0 9.4 17.4 156.0 3.1 3.8 190.0 6.3 2.7 132.0 9.5 17.4 156.0 3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.5 3.6 181.0 6.7 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6 131.0 9.9	2.0	9.5	72.0	5.2			8.4			
2.3 5.2 60.0 5.5 2.4 7.8 55.0 5.6 2.5 5.4 55.0 5.7 2.6 8.4 72.0 5.8 2.7 5.9 58.0 5.9 2.8 4.5 58.0 6.0 2.9 3.7 182.0 6.1 3.0 3.8 184.0 6.2 2.7 129.0 9.4 3.1 3.8 190.0 6.3 2.7 132.0 9.5 3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.6 209.0 6.5 2.7 131.0 9.7 3.4 3.8 182.0 6.6 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6 131.0 9.9 3.6 3.7 190.0 6.8 2.4 128.0 10.0 3.9 184.0 6.9 2.3 127.0 10.1 3.9 7.1 7.2 10.4 10.5	2.1	8.4	59.0	5.3			8.5			
2.4 7.8 55.0 5.6 2.5 5.4 55.0 5.7 2.6 8.4 72.0 5.8 2.7 5.9 58.0 5.9 9.1 16.5 187.0 2.8 4.5 58.0 6.0 2.9 3.7 182.0 6.1 3.0 3.8 184.0 6.2 2.7 129.0 9.4 3.1 3.8 190.0 6.3 2.7 132.0 9.5 3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.6 209.0 6.5 2.7 131.0 9.7 3.4 3.8 182.0 6.6 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6 131.0 9.9 3.6 3.7 190.0 6.8 2.4 128.0 10.0 3.9 184.0 6.9 2.3 127.0 10.1 3.9 7.1 7.2 10.4 10.5 4.1	2.2	4.2	45.0	5.4	Разбур	ивание	8.6			
2.5 5.4 55.0 5.7 2.6 8.4 72.0 5.8 2.7 5.9 58.0 5.9 9.1 16.5 187.0 2.8 4.5 58.0 6.0 2.9 3.7 182.0 6.1 3.0 3.8 184.0 6.2 2.7 129.0 9.4 3.1 3.8 190.0 6.3 2.7 132.0 9.5 3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.6 209.0 6.5 2.7 131.0 9.7 3.4 3.8 182.0 6.6 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6 131.0 9.9 3.6 3.7 190.0 6.8 2.4 128.0 10.0 3.8 7.0 2.6 130.0 10.2 Разбуривание 3.9 7.1 7.2 10.4 10.5 4.1 7.5 7.6 10.6 10.6	2.3	5.2	60.0	5.5			8.7			
2.6 8.4 72.0 5.8 2.7 5.9 58.0 5.9 2.8 4.5 58.0 6.0 2.9 3.7 182.0 6.1 3.0 3.8 184.0 6.2 2.7 129.0 9.4 3.1 3.8 190.0 6.3 2.7 132.0 9.5 3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.6 209.0 6.5 2.7 131.0 9.7 3.4 3.8 182.0 6.6 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6 131.0 9.9 3.6 3.7 190.0 6.8 2.4 128.0 10.0 3.8 7.0 2.6 130.0 10.2 Разбуривание 4.0 7.2 10.4 10.5 4.1 7.5 7.6 10.6 10.6 4.3 7.6 7.7 10.8 10.9	2.4	7.8	55.0	5.6			8.8	18.6	185.0	
2.7 5.9 58.0 5.9 2.8 4.5 58.0 6.0 2.9 3.7 182.0 6.1 3.0 3.8 184.0 6.2 2.7 129.0 9.4 3.1 3.8 190.0 6.3 2.7 132.0 9.5 3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.6 209.0 6.5 2.7 131.0 9.7 3.4 3.8 182.0 6.6 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6 131.0 9.9 3.6 3.7 190.0 6.8 2.4 128.0 10.0 3.7 3.9 184.0 6.9 2.3 127.0 10.1 3.9 7.1 10.3 10.4 10.5 4.0 7.2 10.4 10.5 4.1 7.5 7.6 10.6 10.7 4.4 7.6 7.7 10.8 10.9	2.5	5.4	55.0	5.7			8.9	22.0	195.0	
2.8 4.5 58.0 6.0 2.9 3.7 182.0 6.1 3.0 3.8 184.0 6.2 2.7 129.0 9.4 3.1 3.8 190.0 6.3 2.7 132.0 9.5 3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.6 209.0 6.5 2.7 131.0 9.7 3.4 3.8 182.0 6.6 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6 131.0 9.9 3.6 3.7 190.0 6.8 2.4 128.0 10.0 3.7 3.9 184.0 6.9 2.3 127.0 10.1 3.8 7.0 2.6 130.0 10.2 Разбуривание 4.0 7.2 10.4 10.5 4.1 7.5 7.6 10.6 10.7 4.3 7.6 7.6 10.9 10.9	2.6	8.4	72.0	5.8			9.0	19.0	178.0	
2.9 3.7 182.0 6.1 9.3 17.4 156.0 3.0 3.8 184.0 6.2 2.7 129.0 9.4 3.1 3.8 190.0 6.3 2.7 132.0 9.5 3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.6 209.0 6.5 2.7 131.0 9.7 3.4 3.8 182.0 6.6 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6 131.0 9.9 3.6 3.7 190.0 6.8 2.4 128.0 10.0 3.7 3.9 184.0 6.9 2.3 127.0 10.1 3.8 7.1 7.2 10.3 10.4 4.0 7.2 7.3 10.5 10.5 4.1 7.5 7.6 10.7 10.8 4.5 7.7 10.9 10.9 10.9	2.7	5.9	58.0	5.9			9.1	16.5	187.0	
3.0 3.8 184.0 6.2 2.7 129.0 9.4 3.1 3.8 190.0 6.3 2.7 132.0 9.5 3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.6 209.0 6.5 2.7 131.0 9.7 3.4 3.8 182.0 6.6 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6 131.0 9.9 3.6 3.7 190.0 6.8 2.4 128.0 10.0 3.7 3.9 184.0 6.9 2.3 127.0 10.1 3.8 7.0 2.6 130.0 10.2 Разбуривание 4.0 7.2 10.3 4.1 7.3 10.5 4.2 Разбуривание 7.4 4.3 7.6 10.6 4.5 7.7 10.8 4.5 7.7 10.9	2.8	4.5	58.0	6.0			9.2	18.3	168.0	
3.1 3.8 190.0 6.3 2.7 132.0 9.5 3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.6 209.0 6.5 2.7 131.0 9.7 3.4 3.8 182.0 6.6 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6 131.0 9.9 3.6 3.7 190.0 6.8 2.4 128.0 10.0 3.7 3.9 184.0 6.9 2.3 127.0 10.1 3.8 7.0 2.6 130.0 10.2 Разбуривание 4.0 7.1 10.3 4.1 7.3 10.5 4.2 Разбуривание 7.4 4.3 7.6 10.8 4.4 7.7 10.8 10.9 10.9	2.9	3.7	182.0	6.1			9.3	17.4	156.0	
3.2 4.3 226.0 6.4 2.8 130.0 9.6 3.3 3.6 209.0 6.5 2.7 131.0 9.7 3.4 3.8 182.0 6.6 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6 131.0 9.9 3.6 3.7 190.0 6.8 2.4 128.0 10.0 3.7 3.9 184.0 6.9 2.3 127.0 10.1 3.8 7.0 2.6 130.0 10.2 Разбуривание 4.0 7.2 10.3 10.4 4.1 7.3 10.5 10.6 4.3 7.6 7.6 10.8 10.9	3.0	3.8	184.0	6.2	2.7	129.0	9.4			
3.3 3.6 209.0 6.5 2.7 131.0 9.7 3.4 3.8 182.0 6.6 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6 131.0 9.9 3.6 3.7 190.0 6.8 2.4 128.0 10.0 3.7 3.9 184.0 6.9 2.3 127.0 10.1 3.8 7.0 2.6 130.0 10.2 Разбуривание 3.9 7.1 10.3 4.0 7.2 10.4 4.1 7.3 10.5 4.2 Разбуривание 7.4 4.3 7.6 7.6 4.4 7.7 10.8 4.5 7.7 10.9	3.1	3.8	190.0	6.3	2.7	132.0	9.5			
3.4 3.8 182.0 6.6 2.6 135.0 9.8 3.5 3.6 181.0 6.7 2.6 131.0 9.9 3.6 3.7 190.0 6.8 2.4 128.0 10.0 3.7 3.9 184.0 6.9 2.3 127.0 10.1 3.8 7.0 2.6 130.0 10.2 Разбуривание 3.9 7.1 10.3 4.0 7.2 10.4 4.1 7.3 10.5 4.2 Разбуривание 7.4 10.6 4.3 7.6 10.8 4.4 7.7 10.9	3.2	4.3	226.0	6.4	2.8	130.0	9.6			
3.5 3.6 181.0 6.7 2.6 131.0 9.9 3.6 3.7 190.0 6.8 2.4 128.0 10.0 3.7 3.9 184.0 6.9 2.3 127.0 10.1 3.8 7.0 2.6 130.0 10.2 Разбуривание 3.9 7.1 10.3 4.0 7.2 10.4 4.1 7.3 10.5 4.2 Разбуривание 10.6 4.3 7.6 10.8 4.4 7.6 10.9	3.3	3.6	209.0	6.5	2.7	131.0	9.7			
3.6 3.7 190.0 6.8 2.4 128.0 10.0 3.7 3.9 184.0 6.9 2.3 127.0 10.1 3.8 7.0 2.6 130.0 10.2 Разбуривание 3.9 7.1 10.3 4.0 7.2 10.4 4.1 7.3 10.5 4.2 Разбуривание 10.6 4.3 7.5 10.7 4.4 7.6 10.8 4.5 7.7 10.9	3.4	3.8	182.0	6.6	2.6	135.0	9.8			
3.7 3.9 184.0 6.9 2.3 127.0 10.1 3.8 7.0 2.6 130.0 10.2 Разбуривание 3.9 7.1 10.3 4.0 7.2 10.4 4.1 7.3 10.5 4.2 Разбуривание 10.6 4.3 7.5 10.7 4.4 7.6 10.8 4.5 7.7 10.9	3.5	3.6	181.0	6.7	2.6	131.0	9.9			
3.8 7.0 2.6 130.0 10.2 Разбуривание 3.9 7.1 10.3 4.0 7.2 10.4 4.1 7.3 10.5 4.2 Разбуривание 10.6 4.3 7.5 10.7 4.4 7.6 10.8 4.5 7.7 10.9	3.6	3.7	190.0	6.8	2.4	128.0	10.0			
3.9 7.1 10.3 4.0 7.2 10.4 4.1 7.3 10.5 4.2 Разбуривание 10.6 4.3 7.5 10.7 4.4 7.6 10.8 4.5 7.7 10.9	3.7	3.9	184.0	6.9	2.3	127.0	10.1			
4.0 7.2 4.1 7.3 4.2 Разбуривание 4.3 7.5 4.4 7.6 4.5 7.7 10.4 10.5 10.6 10.7 10.8 10.9	3.8			7.0	2.6	130.0	10.2	Разбур	ивание	
4.1 7.3 4.2 Разбуривание 7.4 Разбуривание 10.6 10.7 4.4 7.6 4.5 10.8 10.9	3.9			7.1			10.3			
4.2 Разбуривание 7.4 Разбуривание 10.6 4.3 7.5 10.7 4.4 7.6 10.8 4.5 7.7 10.9	4.0			7.2			10.4			
4.3 7.5 Разбуривание 10.7 4.4 7.6 10.8 4.5 7.7 10.9	4.1			7.3			10.5			
4.3 7.5 10.7 4.4 7.6 10.8 4.5 7.7 10.9	4.2	Разбур	ивание	7.4	Doobyn	Manno	10.6			
4.5 7.7 10.9	4.3			7.5	Разбуривание		10.7			
	4.4			7.6			10.8			
4.6 7.8 11.0	4.5			7.7			10.9			
	4.6			7.8			11.0			

Взам инв ${ m N}^{ m e}$	
Подп и дата	
нв Nº подл	

Изм	Кол уч	Лист	№док	Подпись	Дата

Глубина	q_c	f_S	Глубина	q_c	f_S	Глубина	q_c	f_S
11.1			14.3					
11.2			14.4					
11.3			14.5					
11.4			14.6					
11.5			14.7	D (
11.6			14.8	Разбур	ивание			
11.7	Разбур	ивание	14.9					
11.8			15.0					
11.9			15.1					
12.0			15.2					
12.1			15.3	15.2	130.0			
12.2			15.4	18.8	125.0			
12.3			15.5	22.4	128.0			
12.4	4.0	189.0	15.6	17.8	134.0			
12.5	3.9	201.0	15.7	25.2	127.0			
12.6	4.0	4.0 160.0						
12.7	4.0	179.0						
12.8	4.2	172.0						
12.9	4.4	182.0						
13.0	4.0	171.0						
13.1								
13.2								
13.3								
13.4								
13.5								
13.6	Dangran	ивание						
13.7	газоур	ивание						
13.8								
13.9								
14.0								
14.1								
14.2								

Взам инв $N^{\!\scriptscriptstyle 2}$	
Подп и дата	
№ подл	

Изм	Кол уч	Лист	№док	Подпись	Дата

Журнал статического зондирования Точка статического зондирования №:4, скв. №10 зонд: II

Глубина	q_c	f_S	Глубина	q_c	f_S	Глубина	q_c	f_s		
3.2	3.6	177.0	6.4	2.1	125.0	9.6				
3.3	3.8	184.0	6.5	2.6	131.0	9.7				
3.4	3.6	196.0	6.6	2.6	127.0	9.8				
3.5	3.6	205.0	6.7	2.5	136.0	9.9				
3.6	3.9	198.0	6.8	2.3	135.0	10.0				
3.7	4.3	201.0	6.9	2.0	131.0	10.1				
3.8	3.8	204.0	7.0	2.6	143.0	10.2				
3.9	3.7	196.0	7.1			10.3				
4.0	3.9	183.0	7.2			10.4				
4.1	4.0	168.0	7.3			10.5				
4.2			7.4			10.6				
4.3			7.5			10.7				
4.4			7.6			10.8				
4.5			7.7			10.9	Разбуривание			
4.6			7.8	D. C		11.0				
4.7			7.9	Разоур	ивание	11.1				
4.8			8.0			11.2				
4.9			8.1			11.3				
5.0			8.2			11.4				
5.1			8.3			11.5				
5.2	Разбур	ивание	8.4			11.6				
5.3			8.5			11.7				
5.4			8.6			11.8				
5.5			8.7	16.4	97.0	11.9				
5.6			8.8	22.4	86.0	12.0				
5.7			8.9	18.8	193.0	12.1				
5.8			9.0	20.0	197.0	12.2				
5.9			9.1	22.0	183.0	12.3				
6.0			9.2	22.0	168.0	12.4				
6.1			9.3			12.5				
6.2			9.4	Разбур	ивание	12.6	3.7	163.0		
6.3	2.5	129.0	9.5			12.7	4.3	152.0		

Взам инв ${ m N}^{ m e}$	
Подп и дата	
ıв № подл	

Изм	Кол уч	Лист	№док	Подпись	Дата

Глубина	q_c	f_S	Глубина	q_c	f_S	Глубина	q_c	f_S
12.8	3.7	188.0						
12.9	4.0	189.0						
13.0	3.8	204.0						
13.1	4.5	156.0						
13.2	4.0	208.0						
13.3	4.2	214.0						
13.4	3.8	208.0						
13.5	3.9	178.0						
13.6	3.8	152.0						
13.7	4.0	178.0						
13.8	3.9	193.0						
13.9	4.0	225.0						
14.0	15.1	165.0						
14.1	19.8	188.0						
14.2	23.7	197.0						
14.3	27.9	215.0						
14.4	21.8	156.0						
14.5	32.7	198.0						

Взам инв №								
Подп и дата								
Инв Nº подл	Изм	Кол уч	Лист	№док	Подпись	Дата	86-05-2018-ИГИ-2.14	Лист

Журнал статического зондирования Точка статического зондирования №:5, скв.№14 зонд: II

Глубина	q_c	f_S	Глубина	q_c	f_S	Глубина	q _c	f_S	
2.0	3.5	187.0	5.2	2.0	131.0	8.4	20.2	153.0	
2.1	3.6	193.0	5.3	2.5	136.0	8.5	22.0	168.0	
2.2	3.7	196.0	5.4	2.6	142.0	8.6	21.0	175.0	
2.3	3.8	183.0	5.5	2.5	128.0	8.7			
2.4	3.6	152.0	5.6	2.4	127.0	8.8			
2.5	3.6	178.0	5.7	2.6	132.0	8.9			
2.6			5.8	2.5	144.0	9.0			
2.7			5.9	2.5	146.0	9.1			
2.8			6.0	2.6	143.0	9.2			
2.9			6.1			9.3			
3.0			6.2			9.4			
3.1			6.3			9.5			
3.2			6.4			9.6			
3.3			6.5			9.7			
3.4			6.6			9.8			
3.5			6.7			9.9			
3.6			6.8			10.0			
3.7	Daakum		6.9			10.1	Разбур	Разбуривание	
3.8	Разоур	ивание	7.0	Разбур	ивание	10.2			
3.9			7.1			10.3			
4.0			7.2			10.4			
4.1			7.3			10.5			
4.2			7.4			10.6			
4.3			7.5			10.7			
4.4			7.6			10.8			
4.5			7.7			10.9			
4.6			7.8			11.0			
4.7			7.9			11.1			
4.8			8.0	15.6	143.0	11.2			
4.9			8.1	22.4	148.0	11.3			
5.0	2.8	144.0	8.2	20.0	156.0	11.4			
5.1	2.0	125.0	8.3	18.8	143.0	11.5			

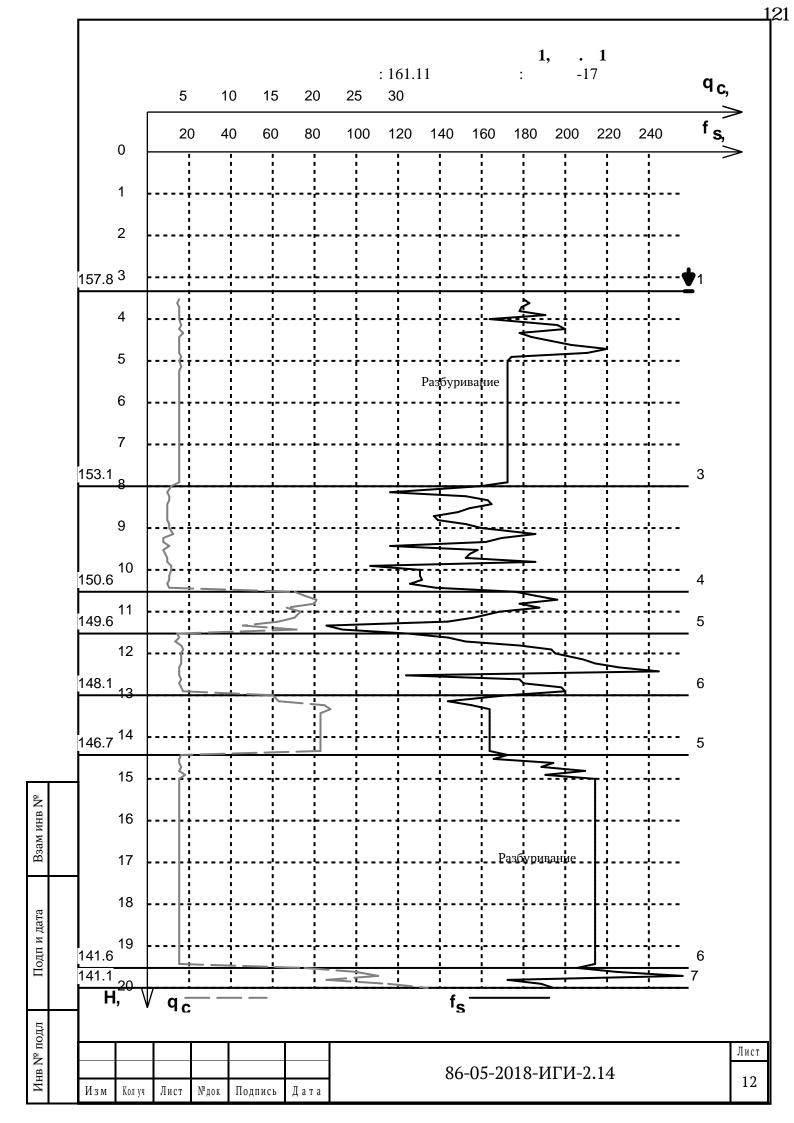
Взам инв $N^{\! m e}$	
Подп и дата	
з № подл	

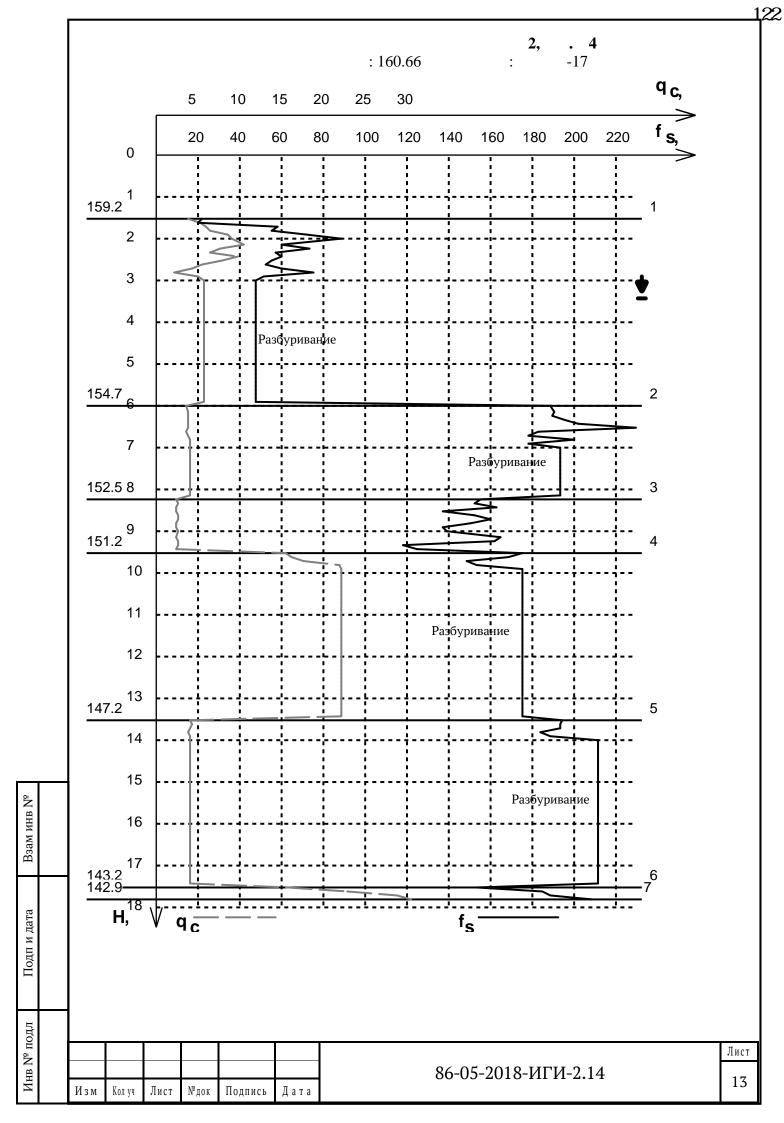
Изм	Кол уч	Лист	№док	Подпись	Дата

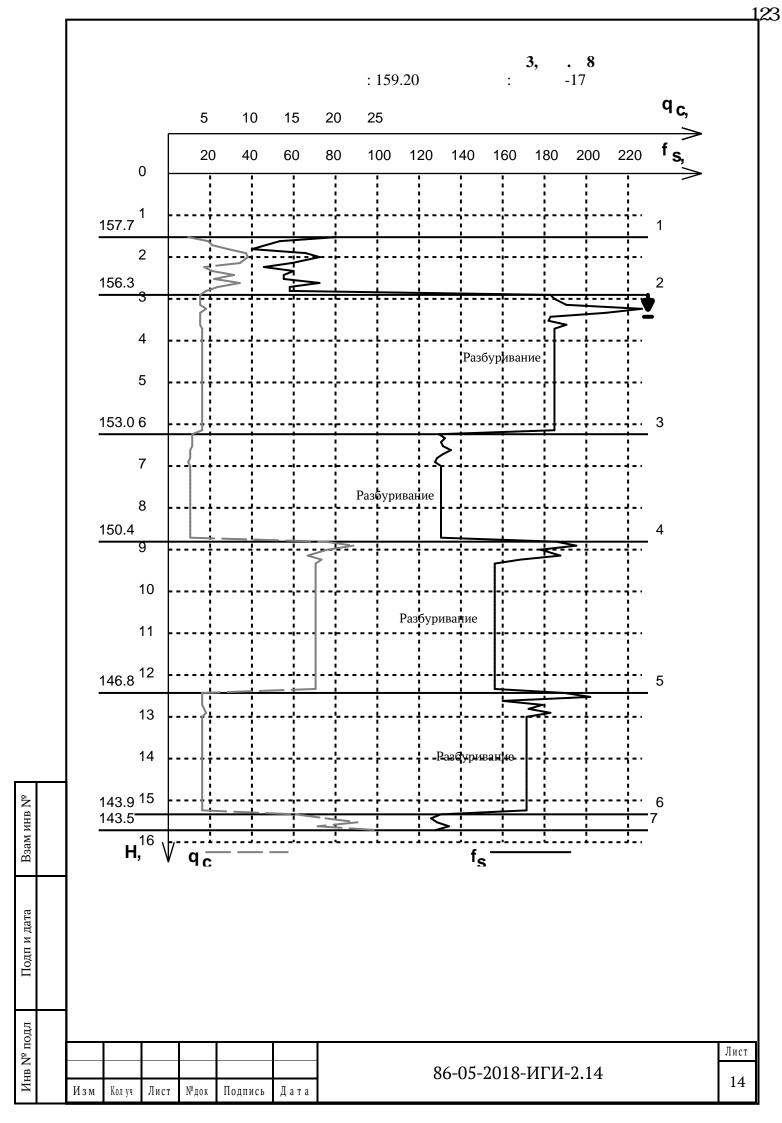
-119

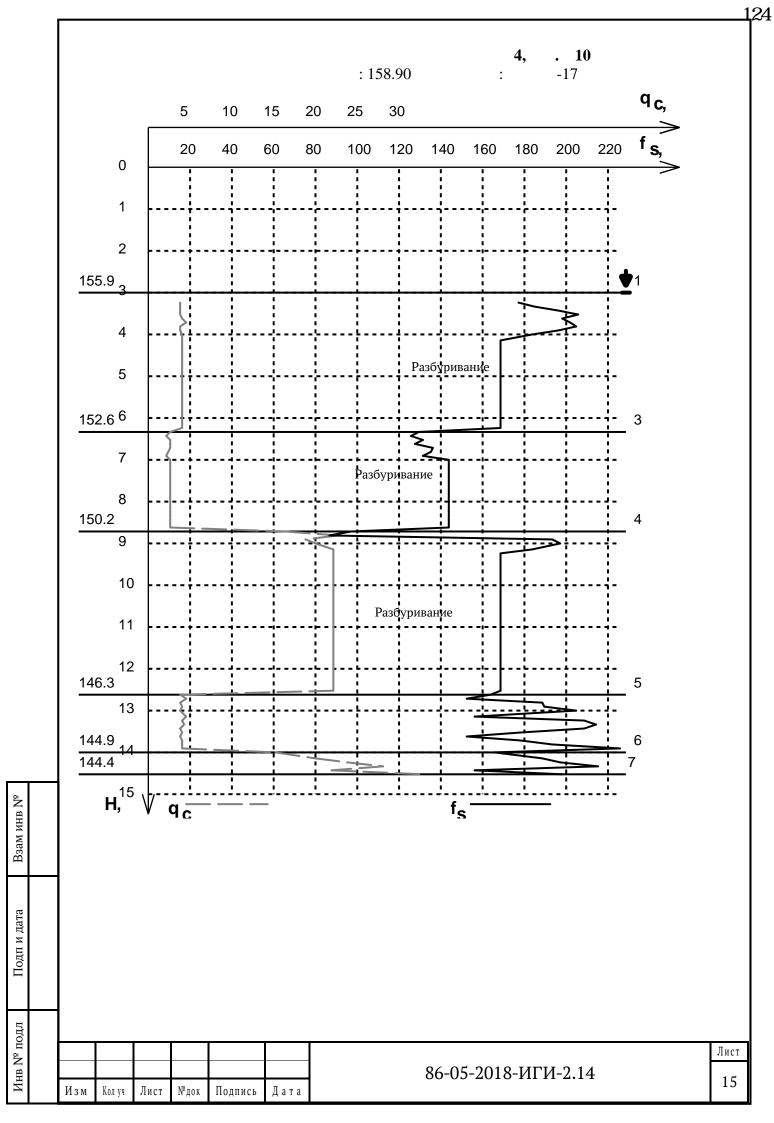
Глубина	q_c	f_S	Глубина	q_c	f_S	Глубина	q_c	f_S
11.6								
11.7								
11.8								
11.9	D 6							
12.0	Разоур	ивание						
12.1								
12.2								
12.3								
12.4	21.0	108.0						
12.5	21.8	124.0						
12.6	28.6	137.0						
12.7	22.0	124.0						
12.8	23.7	104.0						
12.9	27.8	112.0						
13.0	25.8	196.0						

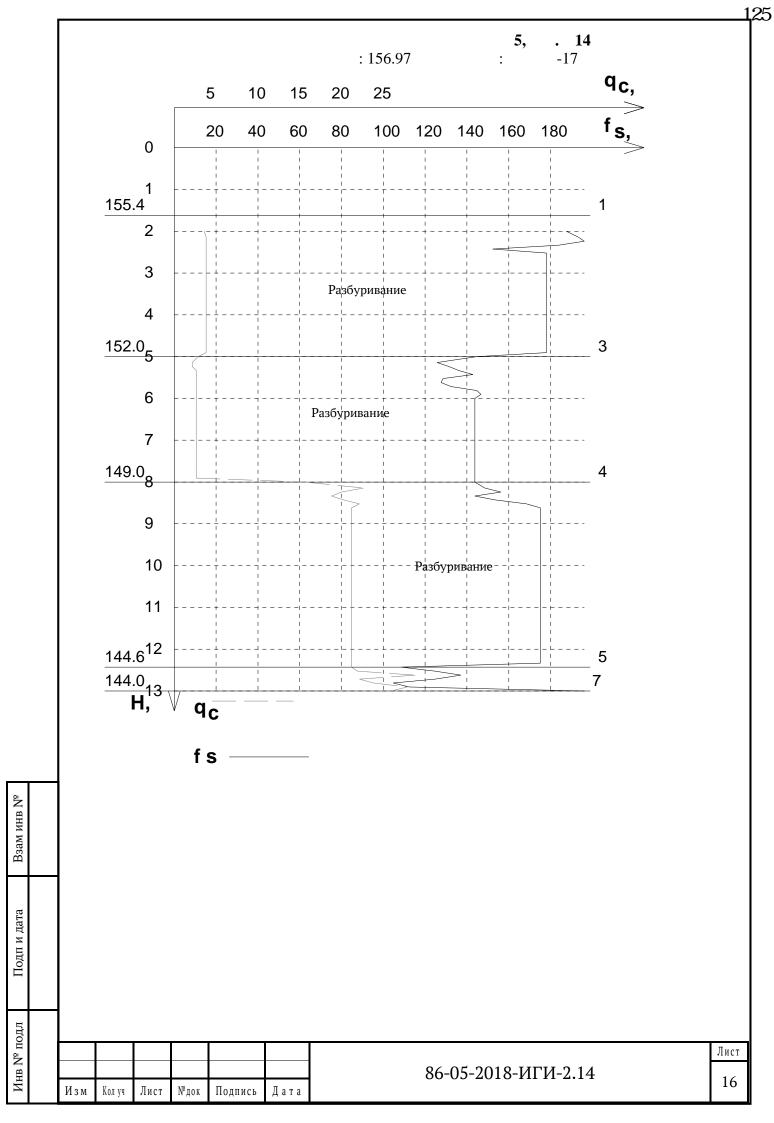
Взам инв №							
Подп и дата							
Инв Nº подл	Изм	Кол уч	Лист	№док	Подпись	Дата	86-05-2018-ИГИ-2.14 10

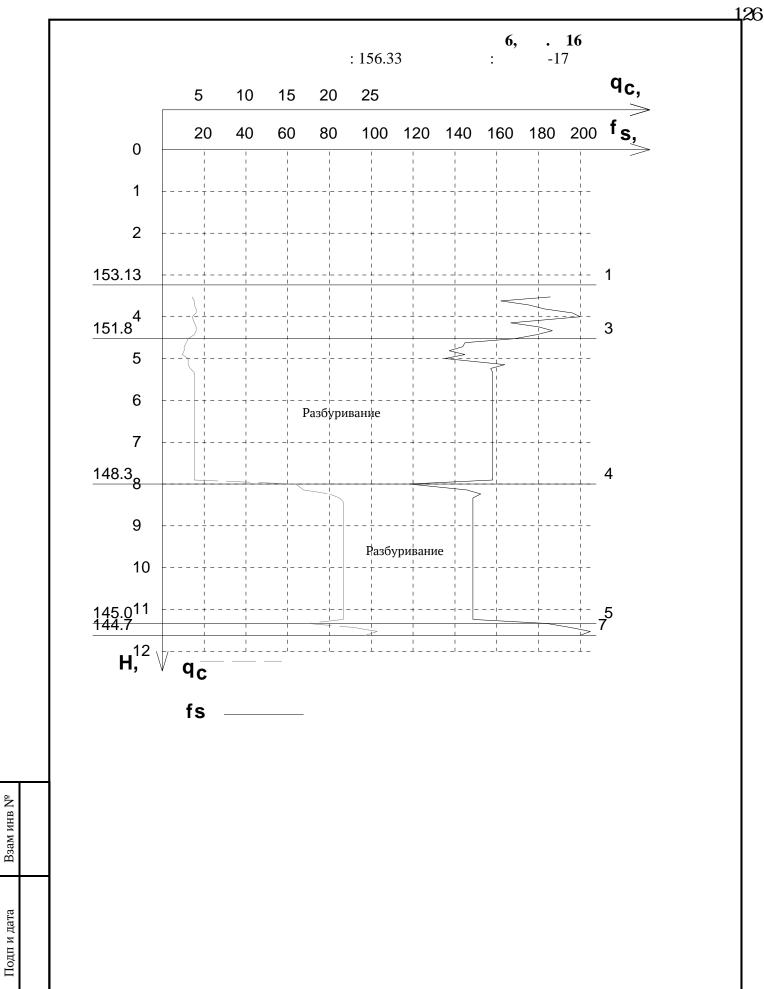

Журнал статического зондирования Точка статического зондирования №:6, скв.№16 зонд: II


Глубина	q_c	f_S	Глубина	q_c	f_S	Глубина	q_c	f_S	
3.5	3.5	185.0	6.7			9.9			
3.6	3.7	161.0	6.8			10.0			
3.7	3.8	175.0	6.9			10.1			
3.8	3.9	182.0	7.0			10.2			
3.9	4.0	196.0	7.1			10.3			
4.0	3.5	200.0	7.2			10.4			
4.1	3.8	166.0	7.3	Разбур	ивание	10.5	Dagerm		
4.2	4.0	180.0	7.4			10.6	Разоур	ивание	
4.3	3.9	186.0	7.5			10.7			
4.4	3.8	179.0	7.6			10.8			
4.5	2.9	168.0	7.7			10.9			
4.6	2.7	144.0	7.8			11.0			
4.7	2.5	143.0	7.9			11.1			
4.8	2.4	137.0	8.0	15.8	118.0	11.2			
4.9	2.3	144.0	8.1	16.8	145.0	11.3	17.2	183.0	
5.0	2.9	135.0	8.2	20.0	152.0	11.4	22.8	195.0	
5.1	3.0	163.0	8.3	21.0	148.0	11.5	25.7	204.0	
5.2	3.2	157.0	8.4	21.5	148.0	11.6	24.2	200.0	
5.3	3.6	158.0	8.5						
5.4			8.6						
5.5			8.7						
5.6			8.8						
5.7			8.9						
5.8			9.0						
5.9			9.1	Danstra	ивание				
6.0	Разбур	ивание	9.2	газоур	ивание				
6.1			9.3						
6.2		9.4							
6.3			9.5						
6.4			9.6						
6.5			9.7						
6.6			9.8						


Взам инв $ m N^2$	
Подп и дата	
нв Nº подл	


Изм	Кол уч	Лист	№док	Подпись	Дата


120



Изм Колуч Лист №док Подпись Дата

Инв № подл

86-05-2018-ИГИ-2.14

17

Лист

Расчеты несущей способности забивной сваи квадратным сечением: 30 см по результатам статического зондирования в точке: 1, скв. №1 Планировочная отметка: 161.11 м

Глубина погруж. острия сваи, м	Абс. отметка погруж. сваи, м	Кол. выраб.	Предел сопрот. грунта сваи, кН	Средне- квадрат отклон. кН	Коэф. вариац.	Коэф. безопас. по грунту	Несущая способн. сваи, кН	Рассчет. нагрузка на сваю, кН
3.0	158.1	1	244.1	0.0	0.0	1.00	244.1	195.3
4.0	157.1	1	278.5	0.0	0.0	1.00	278.5	222.8
5.0	156.1	1	348.7	0.0	0.0	1.00	348.7	279.0
6.0	155.1	1	410.7	0.0	0.0	1.00	410.7	328.5
7.0	154.1	1	461.3	0.0	0.0	1.00	461.3	369.0
8.0	153.1	1	473.0	0.0	0.0	1.00	473.0	378.4
9.0	152.1	1	513.7	0.0	0.0	1.00	513.7	411.0
10.0	151.1	1	820.0	0.0	0.0	1.00	820.0	656.0
11.0	150.1	1	868.7	0.0	0.0	1.00	868.7	695.0
12.0	149.1	1	874.5	0.0	0.0	1.00	874.5	699.6
13.0	148.1	1	1113.1	0.0	0.0	1.00	1113.1	890.5
14.0	147.1	1	1015.1	0.0	0.0	1.00	1015.1	812.1
15.0	146.1	1	893.9	0.0	0.0	1.00	893.9	715.1
16.0	145.1	1	970.1	0.0	0.0	1.00	970.1	776.1
17.0	144.1	1	1047.1	0.0	0.0	1.00	1047.1	837.7
18.0	143.1	1	1124.1	0.0	0.0	1.00	1124.1	899.3
19.0	142.1	1	1452.5	0.0	0.0	1.00	1452.5	1162.0
20.0	141.1	1	1724.0	0.0	0.0	1.00	1724.0	1379.2

Взам инв №	
Подп и дата	
1нв № подл	

Изм	Кол уч	Лист	№док	Подпись	Дата

Расчеты несущей способности забивной сваи квадратным сечением: 35 см по результатам статического зондирования в точке: 1, скв. №1 Планировочная отметка: 161.11 м

Глубина погруж. острия сваи, м	Абс. отметка погруж. сваи, м	Кол. выраб.	Предел сопрот. грунта сваи, кН	Средне- квадрат отклон. кН	Коэф. вариац.	Коэф. безопас. по грунту	Несущая способн. сваи, кН	Рассчет. нагрузка на сваю, кН
3.0	158.1	1	333.7	0.0	0.0	1.00	333.7	266.9
4.0	157.1	1	372.9	0.0	0.0	1.00	372.9	298.3
5.0	156.1	1	454.2	0.0	0.0	1.00	454.2	363.4
6.0	155.1	1	527.1	0.0	0.0	1.00	527.1	421.7
7.0	154.1	1	576.5	0.0	0.0	1.00	576.5	461.2
8.0	153.1	1	589.7	0.0	0.0	1.00	589.7	471.7
9.0	152.1	1	632.4	0.0	0.0	1.00	632.4	505.9
10.0	151.1	1	1037.2	0.0	0.0	1.00	1037.2	829.8
11.0	150.1	1	1091.2	0.0	0.0	1.00	1091.2	873.0
12.0	149.1	1	1134.6	0.0	0.0	1.00	1134.6	907.6
13.0	148.1	1	1371.6	0.0	0.0	1.00	1371.6	1097.2
14.0	147.1	1	1259.7	0.0	0.0	1.00	1259.7	1007.8
15.0	146.1	1	1091.2	0.0	0.0	1.00	1091.2	873.0
16.0	145.1	1	1179.8	0.0	0.0	1.00	1179.8	943.8
17.0	144.1	1	1269.6	0.0	0.0	1.00	1269.6	1015.7
18.0	143.1	1	1359.5	0.0	0.0	1.00	1359.5	1087.6
19.0	142.1	1	1814.1	0.0	0.0	1.00	1814.1	1451.3
20.0	141.1	1	2121.2	0.0	0.0	1.00	2121.2	1697.0

Взам инв №	
Подп и дата	
Инв № подл	

Изм	Кол уч	Лист	№док	Подпись	Дата

86-05-2018-ИГИ-2	1	Δ
00-03-2010-111 11-2	4 • L	4

Расчеты несущей способности забивной сваи квадратным сечением: 30 см по результатам статического зондирования в точке: 2, скв.№4 Планировочная отметка: 160.66 м

Глубина погруж. острия сваи, м	Абс. отметка погруж. сваи, м	Кол. выраб.	Предел сопрот. грунта сваи, кН	Средне- квадрат отклон. кН	Коэф. вариац.	Коэф. безопас. по грунту	Несущая способн. сваи, кН	Рассчет. нагрузка на сваю, кН
1.0	159.7	1	360.4	0.0	0.0	1.00	360.4	288.3
2.0	158.7	1	368.9	0.0	0.0	1.00	368.9	295.1
3.0	157.7	1	364.9	0.0	0.0	1.00	364.9	291.9
4.0	156.7	1	408.7	0.0	0.0	1.00	408.7	326.9
5.0	155.7	1	427.0	0.0	0.0	1.00	427.0	341.6
6.0	154.7	1	421.1	0.0	0.0	1.00	421.1	336.9
7.0	153.7	1	484.4	0.0	0.0	1.00	484.4	387.5
8.0	152.7	1	502.7	0.0	0.0	1.00	502.7	402.1
9.0	151.7	1	796.9	0.0	0.0	1.00	796.9	637.5
10.0	150.7	1	979.9	0.0	0.0	1.00	979.9	783.9
11.0	149.7	1	1063.9	0.0	0.0	1.00	1063.9	851.2
12.0	148.7	1	1147.9	0.0	0.0	1.00	1147.9	918.4
13.0	147.7	1	1126.0	0.0	0.0	1.00	1126.0	900.8
14.0	146.7	1	1010.3	0.0	0.0	1.00	1010.3	808.3
15.0	145.7	1	1086.9	0.0	0.0	1.00	1086.9	869.5
16.0	144.7	1	1162.8	0.0	0.0	1.00	1162.8	930.3
17.0	143.7	1	1480.2	0.0	0.0	1.00	1480.2	1184.2
18.0	142.7	1	1614.1	0.0	0.0	1.00	1614.1	1291.3

Взам инв №	
Подп и дата	
Инв Nº подл	
Инв N	

14	1/	п	A10	П	п
И 3 M	Кол уч	Лист	№ДОК	Подпись	Дата

86-05-2018-ИГИ-2	1	Δ
00-03-2010-111 11-2	4 • L	4

Расчеты несущей способности забивной сваи квадратным сечением: 35 см по результатам статического зондирования в точке:2, скв.№4 Планировочная отметка: 160.66 м

Глубина погруж. острия сваи, м	Абс. отметка погруж. сваи, м	Кол. выраб.	Предел сопрот. грунта сваи, кН	Средне- квадрат отклон. кН	Коэф. вариац.	Коэф. безопас. по грунту	Несущая способн. сваи, кН	Рассчет. нагрузка на сваю, кН
1.0	159.7	1	497.4	0.0	0.0	1.00	497.4	397.9
2.0	158.7	1	493.4	0.0	0.0	1.00	493.4	394.7
3.0	157.7	1	486.7	0.0	0.0	1.00	486.7	389.4
4.0	156.7	1	538.1	0.0	0.0	1.00	538.1	430.5
5.0	155.7	1	546.8	0.0	0.0	1.00	546.8	437.4
6.0	154.7	1	541.0	0.0	0.0	1.00	541.0	432.8
7.0	153.7	1	603.7	0.0	0.0	1.00	603.7	482.9
8.0	152.7	1	620.4	0.0	0.0	1.00	620.4	496.3
9.0	151.7	1	1038.4	0.0	0.0	1.00	1038.4	830.7
10.0	150.7	1	1251.0	0.0	0.0	1.00	1251.0	1000.8
11.0	149.7	1	1349.1	0.0	0.0	1.00	1349.1	1079.3
12.0	148.7	1	1447.1	0.0	0.0	1.00	1447.1	1157.7
13.0	147.7	1	1379.8	0.0	0.0	1.00	1379.8	1103.8
14.0	146.7	1	1228.4	0.0	0.0	1.00	1228.4	982.7
15.0	145.7	1	1317.7	0.0	0.0	1.00	1317.7	1054.2
16.0	144.7	1	1406.3	0.0	0.0	1.00	1406.3	1125.1
17.0	143.7	1	1854.5	0.0	0.0	1.00	1854.5	1483.6
18.0	142.7	1	1989.5	0.0	0.0	1.00	1989.5	1591.6

Взам инв ${ m N}^{ m 2}$	
Подп и дата	
Инв № подл	

Изм	Кол уч	Лист	№док	Подпись	Дата

Расчеты несущей способности забивной сваи квадратным сечением: 30 см по результатам статического зондирования в точке:3, скв.№ 8 Планировочная отметка: 159.20 м

Глубина погруж. острия сваи, м	Абс. отметка погруж. сваи, м	Кол. выраб.	Предел сопрот. грунта сваи, кН	Средне- квадрат отклон. кН	Коэф. вариац.	Коэф. безопас. по грунту	Несущая способн. сваи, кН	Рассчет. нагрузка на сваю, кН
1.0	158.2	1	339.5	0.0	0.0	1.00	339.5	271.6
2.0	157.2	1	354.8	0.0	0.0	1.00	354.8	283.8
3.0	156.2	1	319.2	0.0	0.0	1.00	319.2	255.4
4.0	155.2	1	389.0	0.0	0.0	1.00	389.0	311.2
5.0	154.2	1	451.7	0.0	0.0	1.00	451.7	361.4
6.0	153.2	1	475.2	0.0	0.0	1.00	475.2	380.2
7.0	152.2	1	502.9	0.0	0.0	1.00	502.9	402.3
8.0	151.2	1	747.9	0.0	0.0	1.00	747.9	598.3
9.0	150.2	1	940.2	0.0	0.0	1.00	940.2	752.1
10.0	149.2	1	1010.6	0.0	0.0	1.00	1010.6	808.5
11.0	148.2	1	1085.5	0.0	0.0	1.00	1085.5	868.4
12.0	147.2	1	1050.8	0.0	0.0	1.00	1050.8	840.6
13.0	146.2	1	977.0	0.0	0.0	1.00	977.0	781.6
14.0	145.2	1	1036.9	0.0	0.0	1.00	1036.9	829.5
15.0	144.2	1	1338.1	0.0	0.0	1.00	1338.1	1070.5
16.0	143.2	1	1465.2	0.0	0.0	1.00	1465.2	1172.2

	1нв № подл Подп и дата Взам инв №	
--	-----------------------------------	--

Изм	Кол уч	Лист	№док	Подпись	Дата

Расчеты несущей способности забивной сваи квадратным сечением: 35 см по результатам статического зондирования в точке:3, скв.№8 Планировочная отметка: 159.20 м

Глубина погруж. острия сваи, м	Абс. отметка погруж. сваи, м	Кол. выраб.	Предел сопрот. грунта сваи, кН	Средне- квадрат отклон. кН	Коэф. вариац.	Коэф. безопас. по грунту	Несущая способн. сваи, кН	Рассчет. нагрузка на сваю, кН
1.0	158.2	1	463.6	0.0	0.0	1.00	463.6	370.9
2.0	157.2	1	464.0	0.0	0.0	1.00	464.0	371.2
3.0	156.2	1	427.8	0.0	0.0	1.00	427.8	342.3
4.0	155.2	1	502.7	0.0	0.0	1.00	502.7	402.2
5.0	154.2	1	567.5	0.0	0.0	1.00	567.5	454.0
6.0	153.2	1	591.3	0.0	0.0	1.00	591.3	473.0
7.0	152.2	1	622.8	0.0	0.0	1.00	622.8	498.2
8.0	151.2	1	969.0	0.0	0.0	1.00	969.0	775.2
9.0	150.2	1	1196.4	0.0	0.0	1.00	1196.4	957.1
10.0	149.2	1	1278.3	0.0	0.0	1.00	1278.3	1022.6
11.0	148.2	1	1350.2	0.0	0.0	1.00	1350.2	1080.2
12.0	147.2	1	1294.2	0.0	0.0	1.00	1294.2	1035.4
13.0	146.2	1	1189.6	0.0	0.0	1.00	1189.6	951.7
14.0	145.2	1	1337.4	0.0	0.0	1.00	1337.4	1069.9
15.0	144.2	1	1678.2	0.0	0.0	1.00	1678.2	1342.5
16.0	143.2	1	1818.8	0.0	0.0	1.00	1818.8	1455.1

Взам инв $N^{\mathtt{g}}$	
Подп и дата	
Інв Nº подл	

Изм	Кол уч	Лист	№док	Подпись	Дата

Расчеты несущей способности забивной сваи квадратным сечением: 30 см по результатам статического зондирования в точке:4, скв.№10 Планировочная отметка: 158.90 м

Глубина погруж. острия сваи, м	Абс. отметка погруж. сваи, м	Кол. выраб.	Предел сопрот. грунта сваи, кН	Средне- квадрат отклон. кН	Коэф. вариац.	Коэф. безопас. по грунту	Несущая способн. сваи, кН	Рассчет. нагрузка на сваю, кН
2.0	156.9	1	237.8	0.0	0.0	1.00	237.8	190.3
3.0	155.9	1	248.5	0.0	0.0	1.00	248.5	198.8
4.0	154.9	1	316.7	0.0	0.0	1.00	316.7	253.3
5.0	153.9	1	378.9	0.0	0.0	1.00	378.9	303.1
6.0	152.9	1	389.5	0.0	0.0	1.00	389.5	311.6
7.0	151.9	1	416.2	0.0	0.0	1.00	416.2	333.0
8.0	150.9	1	688.5	0.0	0.0	1.00	688.5	550.8
9.0	149.9	1	897.4	0.0	0.0	1.00	897.4	717.9
10.0	148.9	1	980.6	0.0	0.0	1.00	980.6	784.5
11.0	147.9	1	1061.2	0.0	0.0	1.00	1061.2	849.0
12.0	146.9	1	1050.1	0.0	0.0	1.00	1050.1	840.1
13.0	145.9	1	1023.2	0.0	0.0	1.00	1023.2	818.5
14.0	144.9	1	1292.0	0.0	0.0	1.00	1292.0	1033.6
15.0	143.9	1	1411.5	0.0	0.0	1.00	1411.5	1129.2

Взам инв №	
Подп и дата	
1нв № подл	

Изм	Кол уч	Лист	№док	Подпись	Дата

Расчеты несущей способности забивной сваи квадратным сечением: 35 см по результатам статического зондирования в точке:4, скв.№10 Планировочная отметка: 158.90 м

Глубина погруж. острия сваи, м	Абс. отметка погруж. сваи, м	Кол. выраб.	Предел сопрот. грунта сваи, кН	Средне- квадрат отклон. кН	Коэф. вариац.	Коэф. безопас. по грунту	Несущая способн. сваи, кН	Рассчет. нагрузка на сваю, кН
2.0	156.9	1	327.9	0.0	0.0	1.00	327.9	262.3
3.0	155.9	1	339.8	0.0	0.0	1.00	339.8	271.8
4.0	154.9	1	420.2	0.0	0.0	1.00	420.2	336.1
5.0	153.9	1	479.9	0.0	0.0	1.00	479.9	383.9
6.0	152.9	1	491.3	0.0	0.0	1.00	491.3	393.1
7.0	151.9	1	521.6	0.0	0.0	1.00	521.6	417.3
8.0	150.9	1	915.4	0.0	0.0	1.00	915.4	732.3
9.0	149.9	1	1154.7	0.0	0.0	1.00	1154.7	923.8
10.0	148.9	1	1251.8	0.0	0.0	1.00	1251.8	1001.4
11.0	147.9	1	1345.9	0.0	0.0	1.00	1345.9	1076.7
12.0	146.9	1	1297.3	0.0	0.0	1.00	1297.3	1037.9
13.0	145.9	1	1315.1	0.0	0.0	1.00	1315.1	1052.1
14.0	144.9	1	1615.4	0.0	0.0	1.00	1615.4	1292.3
15.0	143.9	1	1761.2	0.0	0.0	1.00	1761.2	1408.9

нв № подл	Подп и дата	Взам инв $N^{\rm 2}$

Изм	Кол уч	Лист	№док	Подпись	Дата

Расчеты несущей способности забивной сваи квадратным сечением: 30 см по результатам статического зондирования в точке:5, скв.№14 Планировочная отметка: 156.97 м

Глубина погруж. острия сваи, м	Абс. отметка погруж. сваи, м	Кол. выраб.	Предел сопрот. грунта сваи, кН	Средне- квадрат отклон. кН	Коэф. вариац.	Коэф. безопас. по грунту	Несущая способн. сваи, кН	Рассчет. нагрузка на сваю, кН
1.0	156.0	1	237.8	0.0	0.0	1.00	237.8	190.3
2.0	155.0	1	245.3	0.0	0.0	1.00	245.3	196.2
3.0	154.0	1	309.1	0.0	0.0	1.00	309.1	247.2
4.0	153.0	1	360.3	0.0	0.0	1.00	360.3	288.3
5.0	152.0	1	385.5	0.0	0.0	1.00	385.5	308.4
6.0	151.0	1	432.0	0.0	0.0	1.00	432.0	345.6
7.0	150.0	1	626.0	0.0	0.0	1.00	626.0	500.8
8.0	149.0	1	869.3	0.0	0.0	1.00	869.3	695.4
9.0	148.0	1	976.8	0.0	0.0	1.00	976.8	781.5
10.0	147.0	1	1060.8	0.0	0.0	1.00	1060.8	848.7
11.0	146.0	1	1144.8	0.0	0.0	1.00	1144.8	915.9
12.0	145.0	1	1240.4	0.0	0.0	1.00	1240.4	992.3
13.0	144.0	1	1312.7	0.0	0.0	1.00	1312.7	1050.2

нв № подл	Подп и дата	Взам инв $N^{\rm 2}$

Изм	Кол уч	Лист	№док	Подпись	Дата

Расчеты несущей способности забивной сваи квадратным сечением: 35 см по результатам статического зондирования в точке:5, скв.№14 Планировочная отметка: 156.97 м

Глубина погруж. острия сваи, м	Абс. отметка погруж. сваи, м	Кол. выраб.	Предел сопрот. грунта сваи, кН	Средне- квадрат отклон. кН	Коэф. вариац.	Коэф. безопас. по грунту	Несущая способн. сваи, кН	Рассчет. нагрузка на сваю, кН
1.0	156.0	1	326.2	0.0	0.0	1.00	326.2	261.0
2.0	155.0	1	332.4	0.0	0.0	1.00	332.4	265.9
3.0	154.0	1	406.8	0.0	0.0	1.00	406.8	325.4
4.0	153.0	1	457.9	0.0	0.0	1.00	457.9	366.3
5.0	152.0	1	485.9	0.0	0.0	1.00	485.9	388.7
6.0	151.0	1	540.0	0.0	0.0	1.00	540.0	432.0
7.0	150.0	1	854.7	0.0	0.0	1.00	854.7	683.8
8.0	149.0	1	1120.8	0.0	0.0	1.00	1120.8	896.7
9.0	148.0	1	1246.2	0.0	0.0	1.00	1246.2	997.0
10.0	147.0	1	1344.2	0.0	0.0	1.00	1344.2	1075.4
11.0	146.0	1	1442.2	0.0	0.0	1.00	1442.2	1153.8
12.0	145.0	1	1557.2	0.0	0.0	1.00	1557.2	1245.7
13.0	144.0	1	1640.8	0.0	0.0	1.00	1640.8	1312.6

1		
	Взам инв ${ m N}^{ m e}$	
	Подп и дата	
	Інв Nº подл	

Изм	Кол уч	Лист	№док	Подпись	Дата

Расчеты несущей способности забивной сваи квадратным сечением: 30 см по результатам статического зондирования в точке:6, скв.№16 Планировочная отметка: 156.33 м

Глубина погруж. острия сваи, м	Абс. отметка погруж. сваи, м	Кол. выраб.	Предел сопрот. грунта сваи, кН	Средне- квадрат отклон. кН	Коэф. вариац.	Коэф. безопас. по грунту	Несущая способн. сваи, кН	Рассчет. нагрузка на сваю, кН
3.0	153.3	1	245.8	0.0	0.0	1.00	245.8	196.6
4.0	152.3	1	253.4	0.0	0.0	1.00	253.4	202.7
5.0	151.3	1	316.0	0.0	0.0	1.00	316.0	252.8
6.0	150.3	1	385.7	0.0	0.0	1.00	385.7	308.5
7.0	149.3	1	546.5	0.0	0.0	1.00	546.5	437.2
8.0	148.3	1	783.6	0.0	0.0	1.00	783.6	626.8
9.0	147.3	1	881.7	0.0	0.0	1.00	881.7	705.4
10.0	146.3	1	952.8	0.0	0.0	1.00	952.8	762.2
11.0	145.3	1	1030.6	0.0	0.0	1.00	1030.6	824.5
12.0	144.3	1	1121.9	0.0	0.0	1.00	1121.9	897.5

Расчеты несущей способности забивной сваи квадратным сечением: 35 см по результатам статического зондирования в точке:6, скв.№16 Планировочная отметка: 156.33 м

Глубина погруж. острия сваи, м	Абс. отметка погруж. сваи, м	Кол. выраб.	Предел сопрот. грунта сваи, кН	Средне- квадрат отклон. кН	Коэф. вариац.	Коэф. безопас. по грунту	Несущая способн. сваи, кН	Рассчет. нагрузка на сваю, кН
3.0	153.3	1	335.5	0.0	0.0	1.00	335.5	268.4
4.0	152.3	1	343.3	0.0	0.0	1.00	343.3	274.6
5.0	151.3	1	411.3	0.0	0.0	1.00	411.3	329.0
6.0	150.3	1	496.2	0.0	0.0	1.00	496.2	397.0
7.0	149.3	1	755.2	0.0	0.0	1.00	755.2	604.1
8.0	148.3	1	1007.8	0.0	0.0	1.00	1007.8	806.3
9.0	147.3	1	1135.9	0.0	0.0	1.00	1135.9	908.7
10.0	146.3	1	1217.3	0.0	0.0	1.00	1217.3	973.9
11.0	145.3	1	1311.4	0.0	0.0	1.00	1311.4	1049.1
12.0	144.3	1	1418.2	0.0	0.0	1.00	1418.2	1134.5

Расчетная нагрузка с коэффициентом: 1.25

Изм	Кол уч	Лист	№док	Подпись	Дата

Взам инв N°

Подп и дата

Инв № подл

86-05-2018-ИГИ-2.14

N Xn S V N N N N N N N N N							
N Xn S V			- :		: 2		
. 30 5.99 1.54 0.26 . 30 56.85 26.30 0.46 (11-105-97)				1			.
. 30 56.85 26.30 0.46 (111-105-97)				N	Xn	S	V
у. V			,	30	5.99	1.54	0.26
q. E q. 18.0 30.7 N Xn S V I N Xn S V 68 3.77 0.27 0.07 (11-105-97) E, 26.4 c, 0.034 N- Xn- V. S - V.			,	30	56.85	26.30	0.46
E q, 18.0 N. Xn. V - S - I N Xn S V , 68 3.77 0.27 0.07 ' 68 180.02 13.46 0.07 (11-105-97) E, 26.4 c, 0.034 , 24.5 N - Xn - V - S - 86-05-2018-ИГИ-2.14 30.0						(11-105	-97)
E q, 18.0 N. Xn. V - S - I N Xn S V , 68 3.77 0.27 0.07 ' 68 180.02 13.46 0.07 (11-105-97) E, 26.4 c, 0.034 , 24.5 N - Xn - V - S - 86-05-2018-ИГИ-2.14 30.0							
. 30.7 N - Xn - V - S			q,				
N- Xn- V - S - I N Xn S V . 68 3.77 0.27 0.07 . 68 180.02 13.46 0.07 (11-105-97) E, 26.4 c, 0.034 , 24.5 N- Xn- V - 86-05-2018-ИГИ-2.14 30			Е	q,		18.0	_
- : 3 : N Xn S V						30.7	
- : 3 : N Xn S V	N -		Xn - V -	S -			
.: N Xn S V							
.: N Xn S V			-		. 3		
N Xn S V , 68 3.77 0.27 0.07 (11-105-97) E, 26.4 c, 0.034 , 24.5 N- Xn- S- V- 86-05-2018-ИГИ-2.14 Лис					• •		
N Xn S V . 68 3.77 0.27 0.07 (11-105-97) E, 26.4 c, 0.034 , 24.5 N- Xn- S- V - 86-05-2018-ИГИ-2.14 Лис							
, 68 3.77 0.27 0.07 - 68 180.02 13.46 0.07 (11-105-97) E, 26.4 - c, 0.034 - , 24.5 N - Xn - V - S - V - - 86-05-2018-ИГИ-2.14							
. 68 180.02 13.46 0.07 (11-105-97) E, 26.4 c, 0.034 , 24.5 N- Xn- S- V- S-					V		T
Е, 26.4 с, 0.034 . 24.5 N- Xn- S- V-				N			
E, 26.4 c, 0.034 , 24.5 N - Xn - S - V - 86-05-2018-ИГИ-2.14				N 68	3.77	0.27	0.07
с, 0.034 , 24.5 N - Xn - V - S - 86-05-2018-ИГИ-2.14				N 68	3.77	0.27	0.07
с, 0.034 , 24.5 N - Xn - V - S - 86-05-2018-ИГИ-2.14				N 68	3.77	0.27	0.07
, Xn- S- V- — — — — — — — — — — — — — — — — — —				N 68	3.77	0.27	0.07
N - Xn - S - V - Лис 86-05-2018-ИГИ-2.14			,	N 68	3.77	0.27 13.46 (11-105	0.07
В6-05-2018-ИГИ-2.14			, E,	N 68	3.77	0.27 13.46 (11-105	0.07
В6-05-2018-ИГИ-2.14			E, c,	N 68 68	3.77	0.27 13.46 (11-105 26.4 0.034	0.07
86-05-2018-ИГИ-2.14	N -		E, c,	N 68 68	3.77	0.27 13.46 (11-105 26.4 0.034	0.07
86-05-2018-ИГИ-2.14	N -		E, c,	N 68 68	3.77	0.27 13.46 (11-105 26.4 0.034	0.07
86-05-2018-ИГИ-2.14	N -		E, c,	N 68 68	3.77	0.27 13.46 (11-105 26.4 0.034	0.07
86-05-2018-ИГИ-2.14	N -		E, c,	N 68 68	3.77	0.27 13.46 (11-105 26.4 0.034	0.07
86-05-2018-ИГИ-2.14	N -		E, c,	N 68 68	3.77	0.27 13.46 (11-105 26.4 0.034	0.07
86-05-2018-ИГИ-2.14	N -		E, c,	N 68 68	3.77	0.27 13.46 (11-105 26.4 0.034	0.07
	N -		E, c,	N 68 68	3.77	0.27 13.46 (11-105 26.4 0.034	0.07 0.07

Взам инв $N^{\!2}$

Подп и дата

Hнв $m N^{2}$ подл

- : 4 N Xn S	V 0.29 0.10
1	0.29
N Xn S	0.29
N Xn S	0.29
N Xn S	0.29
N N S	
F. 22.8	0.10
E, 22.8 c, 0.031 , 23.5 N- Xn- V- S- - : 5 : N	
c, 0.031 N 23.5 N N Xn S N Xn S N Xn S 1 N Xn S 1 N Xn S 1 1 N 16.02 (11-105-97) Q, E q, 60 N 36.6	
c, 0.031 N 23.5 N N Xn S N Xn S N Xn S 1 N Xn S 30 20.22 3.03 30 164.41 16.02 (11-105-97) 4, E q, 60 7 36.6	
, 23.5 N- Xn- V- S- - : 5 : N Xn S	
N- Xn- V- S-	
- : 5 : N Xn S , 30 20.22 3.03 , 30 164.41 16.02 (11-105-97)	
1 N Xn S	
I	
1	
N Xn S , 30 20.22 3.03 , 30 164.41 16.02 (11-105-97) g, E q, 60 , 36.6	
N Xn S , 30 20.22 3.03 , 30 164.41 16.02 (11-105-97) g, E q, 60 , 36.6	
q, E q, 60 36.6	V
q, E q, 60 36.6	0.15
q, E q, 60 36.6	0.10
E q, 60 , 36.6	
E q, 60 , 36.6	
, 36.6	
V -	
0/ Of 2010 IAPIA 2 14	
Изм Колуч Лист №док Подпись Дата 86-05-2018-ИГИ-2.14	Лист

,	1 N 48 48	Xn 4.44	S	v
	48		S	\mathbf{V}
		4.44	2.25	
	40	190.46	2.25	0.28
		170.40		
			(11-105	-97)
Е,			31.1	
с,	_		0.038 25.4	
, N - Xn - V -	S -			
V -				
-		: 7		
;	:			
	1 N	Xn	S	v
,	26	25.01	4.03	0.16
,	26	172.23	40.22	0.23
			(11-105	5-97)
		<u> </u>		
q,				
E	q,		65.0	
	,		37.8	
N - Xn - V -	S -			
	36-05-2018	0 141114 0 1		Ли

Взам инв $N^{\rm e}$

Подп и дата

 ${
m HHB~N^{9}}$ подл

Ведомость определения блуждающих токов в земле

Дата проведения

измерений 05.2018г. Погодные условия при проведении

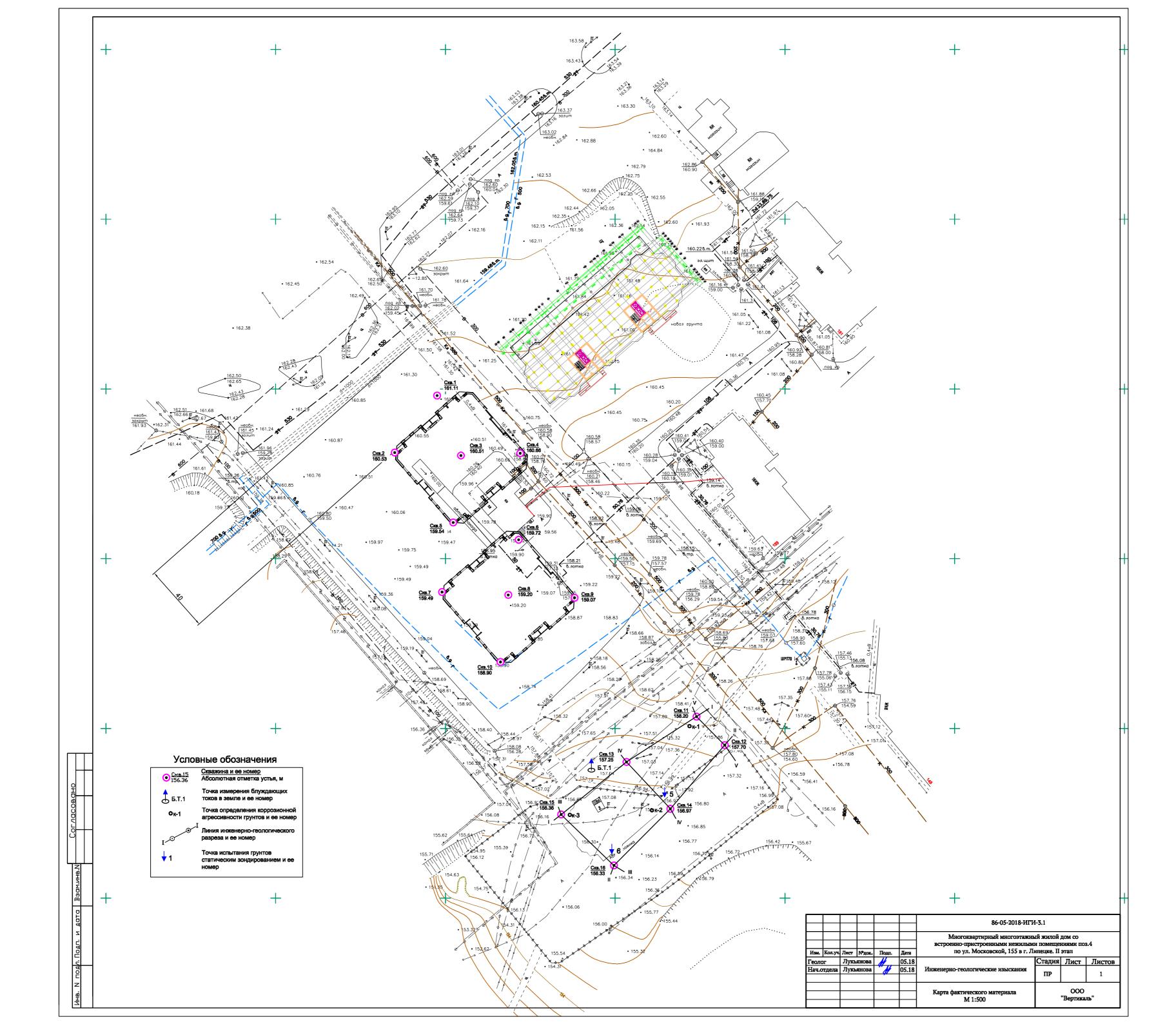
измерений: солнечно

ГОСТ 9.602-2016

ТАБЛИЦА

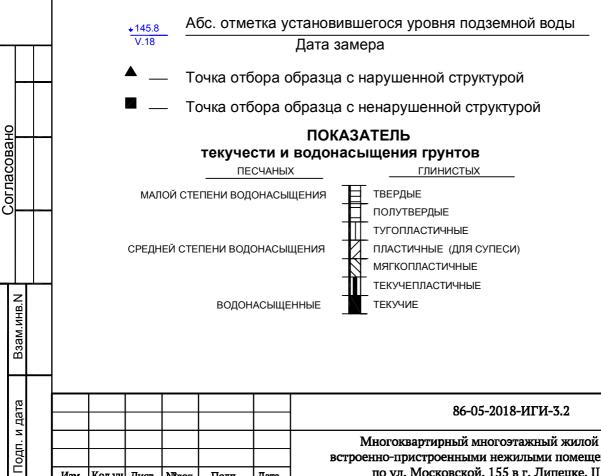
результатов измерения разности потенциалов между двумя точками земли

		Max	Max	Наибольший				
№ пункта	Вид измерений	(+)	(-)	размах измеряемой величины	Наличие (отсутствие) блуждающих токов			
Скв.13	Земля - земля	0,013	0,017	0,030	Отсутствуют			

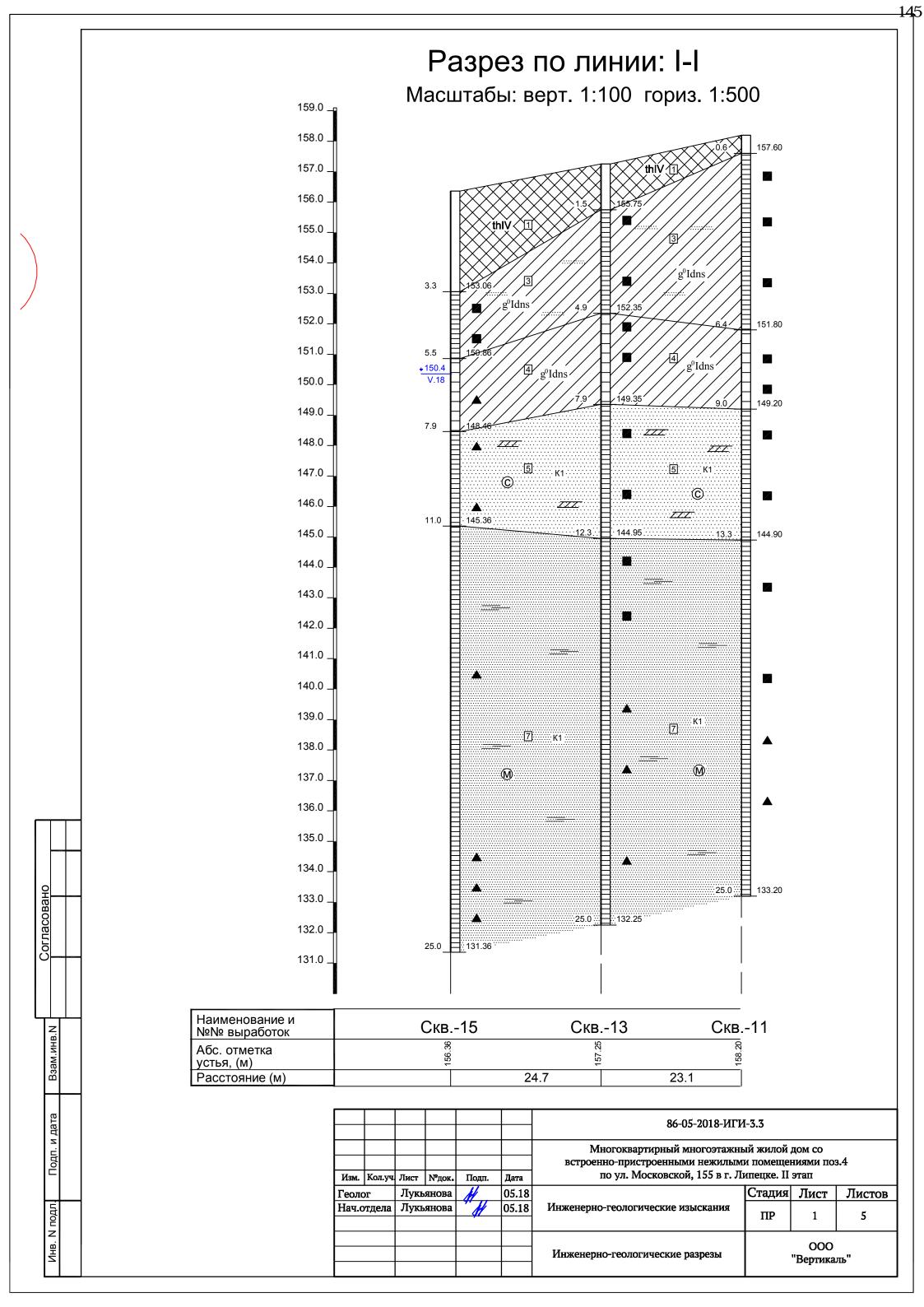

	- 7		П	Nº πον		П	86-05-2018-ИГИ	-2.15		
Изм	I Ko	л уч	Лист	№ док	Подп	Дата				
Геол	лог		Лукья	нова	M 1	05.18		Стадия	Лист	Листов
Нач	.отде.	ла.	Лукья	нова	" J1	05.18	Ведомость определения блуждающих	ПР		1
					1.55.5		токов в земле			
							ООО «Вертикаль»		икаль»	

Система координат – <u>Местная.</u> Система высот - <u>Балтийская.</u>

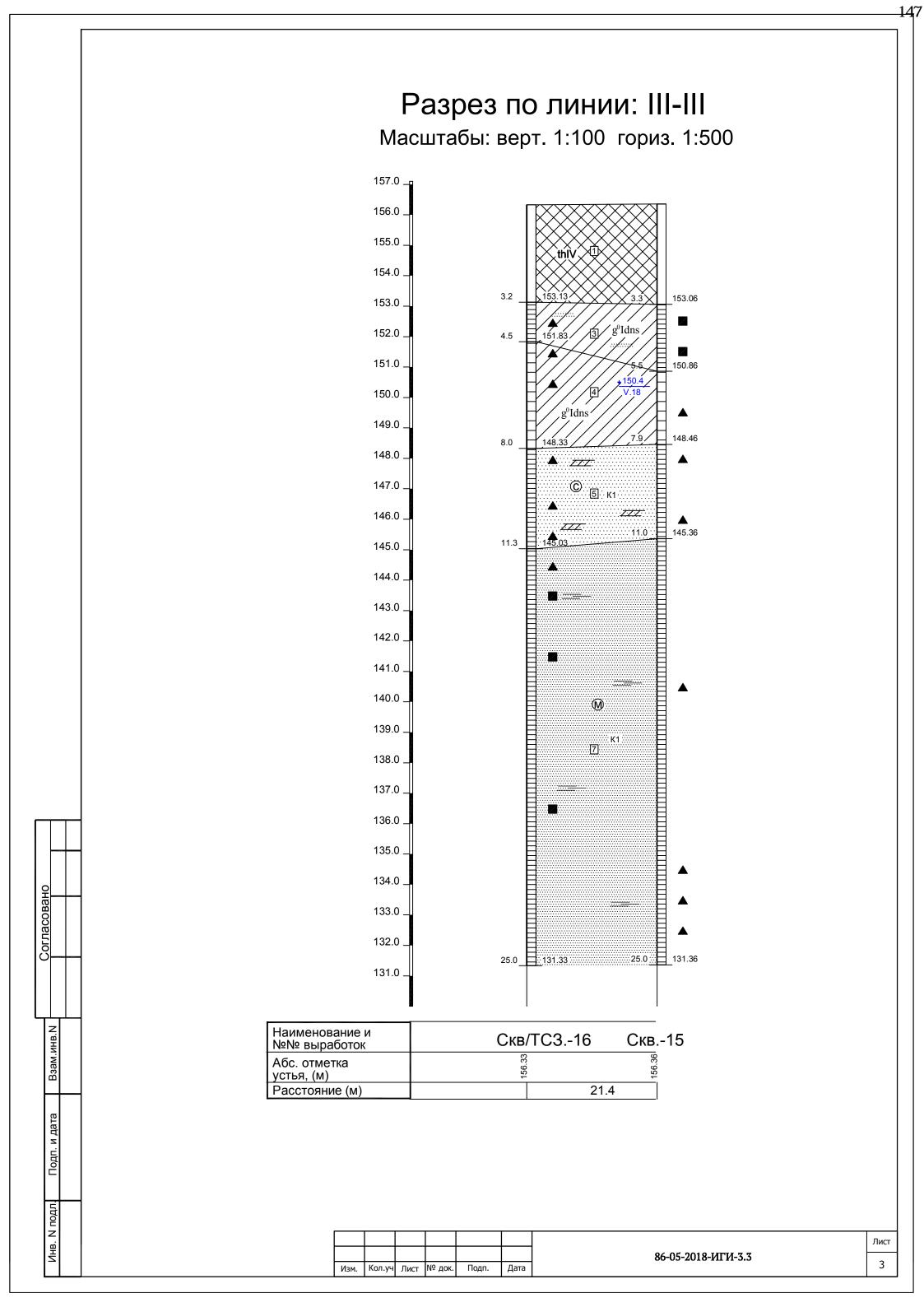
Каталог координат и высот выработок

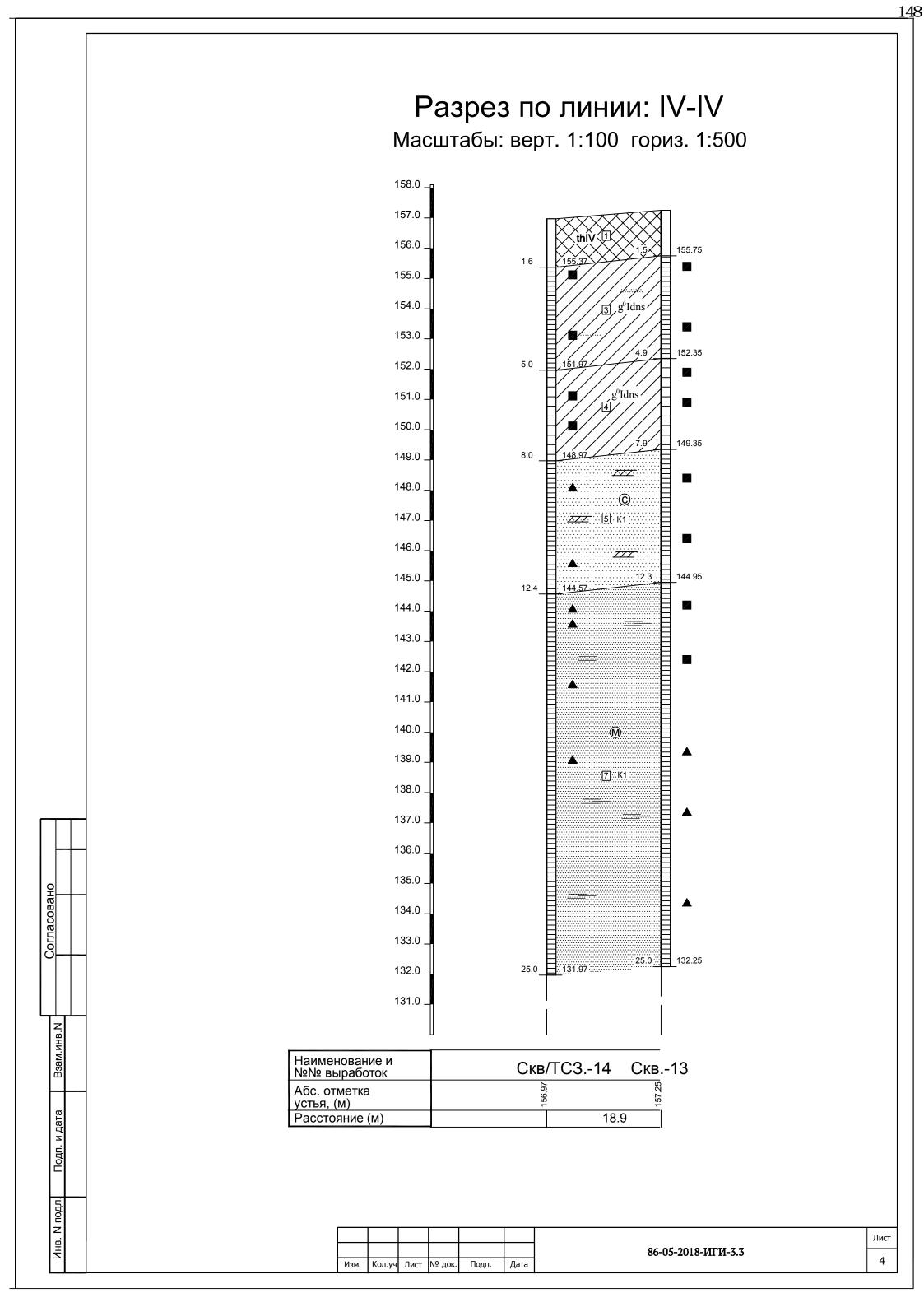

№№ Скв.	Вид выработок	Глубина скважин, м	Коорд	цинаты	Высотная отметка
			X	У	устья, м
11	Скважина	25.0	-1346.52	-6076.05	158.20
12	Скважина	25.0	-1354.91	-6067.73	157.70
13	Скважина	25.0	-1359.88	-6096.68	157.25
14	Скважина/ТСЗ	25.0	-1373.68	-6083.76	156.97
15	Скважина	25.0	-1375.35	-6115.92	156.36
16	Скважина/ТСЗ	25.0	-1390.36	-6100.69	156.33

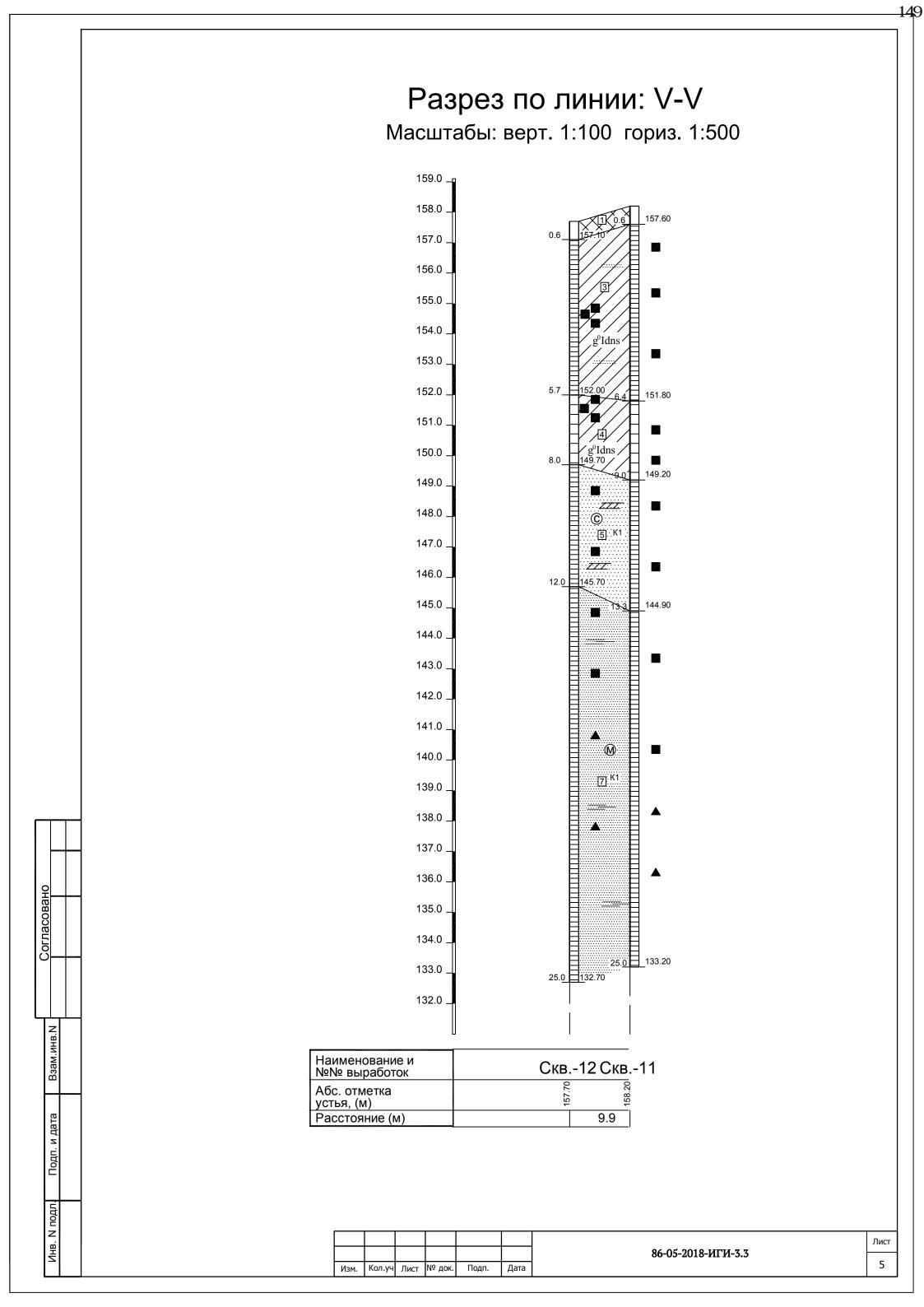
						86-05-2018-ИГИ-2.16			
Изм Колуч Лист № док Подп Дата									
Геолог		Лукьянова		11 1.	05.18		Стадия	Лист	Листов
Нач.от	гдела	Лукьянова 05.18		05.18		ПР		1	
				1-0-2		Каталог координат и высот выработок	ООО «Вертикаль»		


УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

-еоиндекс	Геолого- литологич. КРАТКОЕ ОПИСАНИЕ ГРУНТОВ колонка					
thIV		Насыпной грунт - смесь почвы, суглинка, щебня, песка, с поверхности асфальтобетон				
07.1	3	Суглинок твердый, лёгкий, коричневый, серо-коричневый, бурый, незасоленный, песчанистый, с частыми прослоями и линзами песка ожелезнённого, с включениями гальки и гравия осадочных и кристаллических пород				
g ⁰ Idns	4	Суглинок полутвердый, тяжёлый, серый, незасоленный, с частыми прослоями и линзами песка ожелезнённого, с включениями гальки и гравия осадочных и кристаллических пород				
	5 ₀	Песок средней крупности, плотный, от малой до средней степени водонасыщения, коричневый, серый, серо-коричневый, серо-жёлтый, неоднородный, с частыми прослоями суглинка, местами ожелезнённый, незасоленный				
К1	<u></u>	Песок мелкий, плотный, малой степени водонасыщения, серо-белый, белый, серо-рыжий, жёлто-оранжевый, с частыми прослойками суглинка, местами ожелезнённый, незасоленный				




Инв. N подл.


1													
ı								86-05-2018-ИГИ-3.2					
-		Изм.	Кол.уч.	Лист	№док.	Подп.	Дата	Многоквартирный многоэтажный жилой дом со встроенно-пристроенными нежилыми помещениями поз.4 по ул. Московской, 155 в г. Липецке. II этап					
		Геоло	Г	Лукь	янова	#	05.18		Стадия	Лист	Листов		
I		Нач.отдела Лукьянова			05.18	Инженерно-геологические изыскания	ПР		1				
						Условные обозначения	ООО "Вертикаль"						

Разрез по линии: II-II Масштабы: верт. 1:100 гориз. 1:500 158.0 __ 157.0 156.0 155.0 154.0 153.0 152.00 152.0 g⁰Idns. 151.0 150.0 149.0 148.0 0 147.0 146.0 12.0 11.3 145.0 144.0 _ 143.0 142.0 _ 141.0 . **(M)** 140.0 _ M 139.0 7 _{K1} 7 K1 138.0 137.0 136.0 _ 135.0 134.0 _ 133.0 25.0 :: 132.70 132.0 25.0 131.33 131.0 Взам.инв.N Наименование и Скв/ТС3.-16 Скв/ТС3.-14 Скв.-12 №№ выработок Абс. отметка устья, (м) Подп. и дата Расстояние (м) 23.8 24.7 Инв. N подл 86-05-2018-ИГИ-3.3 2 Изм. Кол.уч Лист № док. Подп.

Скважина №: 11

Дата бурения: май 2018 год.

Масштаб верт.: 1:100 Отметка устья: 158.20 м Общая глубина: 25.00 м

Сведения о пробах Абс. отметка подошвы слоя, м Мощность слоя, м Сведения о воде Геолого-литологический разрез Глубина слоя, м Номера ИГЭ Геоиндекс Наименование пород и их характеристика Насыпной грунт - смесь почвы, суглинка, щебня, песка, с поверхности асфальтобетон thIV 0.60 0.60 157.60 ■ 1.50 Суглинок твердый, лёгкий, коричневый, ■ 3.00 серо-коричневый, бурый, незасоленный, серо-коричневыи, сурыи, незасоленным, песчанистый, с частыми прослоями и линзами песка ожелезнённого, с включениями гальки и гравия осадочных и кристаллических пород က g⁰Idns ■ 5.00 5.80 6.40 151.80 Суглинок полутвердый, тяжёлый, серый, незасоленный, с частыми прослоями и ■ 7.50 линзами песка ожелезнённого, с включениями гальки и гравия осадочных и кристаллических пород ■ 8.50 Подземные воды не вскрыты 2.60 9.00 149.20 ■ 10.00 Песок средней крупности, плотный, малой степени водонасыщения, коричневый, серый, серо-коричневый, серо-жёлтый, неоднородный, с частыми прослоями 2 0 суглинка, местами ожелезнённый, ■ 12.00 незасоленный 4.30 | 13.30 | 144.90 ■ 15.00 К1 ■ 18.00 M Песок мелкий, плотный, малой степени водонасыщения, серо-белый, белый, серо-рыжий, жёлто-оранжевый, с частыми прослойками суглинка, местами ▲ 20.00 ожелезнённый, незасоленный **22.00** 11.70 25.00 133.20

						86-05-2018-ИГИ	I-3.4		
Изм.	Кол.уч.	Лист	№док.	Подп.	Дата	Многоквартирный многоэтажні встроенно-пристроенными нежилым по ул. Московской, 155 в г. Л	и помеще	оп имкин	3.4
Геоло	ОГ	Лукьянова		M	05.18		Стадия	Лист	Листов
Нач.отдела		Лукьянова		** //	05.18	Инженерно-геологические изыскания	ПР	1	6
						Литологические колонки скважин	ООО "Вертикаль"		ль"

011000000	COLLIACOBARO			
)			
		Взам.инв.N		
		Подп. и дата		
	14	ИНВ. N ПОДЛ		

Масштаб верт.: 1:100 Скважина №: 12 Отметка устья: 157.70 м Общая глубина: 25.00 м Дата бурения: май 2018 год. Абс. отметка подошвы слоя, м Сведения о пробах Мощность слоя, м Сведения о воде литологический разрез Глубина слоя, м Номера ИГЭ Геоиндекс Наименование пород и их характеристика Насыпной грунт - смесь почвы, суглинка, щебня, thIV | 0.60 | 0.60 157.10 песка, с поверхности асфальтобетон ■ 3.00 ■ 3.20 ■ 3.50 Суглинок твердый, лёгкий, коричневый, серо-коричневый, бурый, незасоленный, песчанистый, с частыми прослоями и линзами песка ожелезнённого, с включениями гальки и g⁰Idns гравия осадочных и кристаллических пород 152.00 5.10 5.70 Суглинок полутвердый, тяжёлый, серый, незасоленный, с частыми прослоями и линзами песка ожелезнённого, с включениями гальки и гравия осадочных и кристаллических пород 149.70 2.30 8.00 Подземные воды не вскрыты ZZZ ■ 9.00 Песок средней крупности, плотный, малой степени водонасыщения, коричневый, серый, серо-коричневый, серо-жёлтый, неоднородный, с частыми прослоями суглинка, местами ожелезнённый, ■ 11.00 4.00 | 12.00 | 145.70 ■ 13.00 ■ 15.00 К1 **17.00** Песок мелкий, плотный, малой степени водонасыщения, серо-белый, белый, серо-рыжий, жёлто-оранжевый, с частыми / прослойками суглинка, местами Согласовано ожелезнённый, незасоленный **2**0.00 Взам.инв.N 13.00 25.00 132.70 Подп. и дата Инв. N подл Лист 86-05-2018-ИГИ-3.4

Дата

Подп.

Кол.уч Лист № док.

Изм.

2

Масштаб верт.: 1:100 Скважина №: 13 Отметка устья: 157.25 м Общая глубина: 25.00 м Дата бурения: май 2018 год. Абс. отметка подошвы слоя, м Сведения о пробах Σ Сведения о воде Геолого-литологический разрез Глубина слоя, м Мощность слоя, Номера ИГЭ Геоиндекс Наименование пород и их характеристика Насыпной грунт - смесь почвы, суглинка, щебня, thIV песка, с поверхности асфальтобетон 1.50 1.50 155.75 ■ 2.00 Суглинок твердый, лёгкий, коричневый, серо-коричневый, бурый, незасоленный, песчанистый, с частыми прослоями и линзами песка ожелезнённого, с включениями гальки и гравия осадочных и кристаллических пород ■ 4.00 g⁰Idns 3.40 4.90 152.35 ■ 5.50 Суглинок полутвердый, тяжёлый, серый, незасоленный, с частыми прослоями и линзами песка ожелезнённого, с **■** 6.50 Подземные воды не вскрыты включениями гальки и гравия осадочных и кристаллических пород 149.35 3.00 7.90 III. ■ 9.00 Песок средней крупности, плотный, малой степени водонасыщения, коричневый, серый, серо-коричневый, серо-жёлтый, *I.Z.Z.* 0 неоднородный, с частыми прослоями 2 суглинка, местами ожелезнённый, незасоленный ■ 11.00 4.40 | 12.30 | 144.95 | ■ 13.20 ■ 15.00 К1 **18.00** Песок мелкий, плотный, малой степени водонасыщения, серо-белый, белый, Согласовано серо-рыжий, жёлто-оранжевый, с частыми M. прослойками суглинка, местами ожелезнённый, незасоленный **2**0.00 **23.00** Взам.инв.N 12.70 25.00 132.25 Подп. и дата Инв. N подл Лист 86-05-2018-ИГИ-3.4 3 Изм. Дата Кол.уч Лист № док. Подп.

Масштаб верт.: 1:100 Скважина/ТСЗ №: 14 Отметка устья: 156.97 м Дата бурения: май 2018 год. Общая глубина: 25.00 м Абс. отметка подошвы слоя, м Сведения о пробах Мощность слоя, м Сведения о воде Геолого-литологический разрез Глубина слоя, м Номера ИГЭ Геоиндекс Наименование пород и их характеристика Насыпной грунт - смесь почвы, суглинка, щебня, thIV песка, с поверхности асфальтобетон 1.60 | 1.60 155.37 ■ 2.00 Суглинок твердый, лёгкий, коричневый, серо-коричневый, бурый, незасоленный, песчанистый, с частыми прослоями и линзами песка ожелезнённого, с включениями гальки и ■ 4.00 гравия осадочных и кристаллических пород $g^{0}Idns$ 3.40 5.00 151.97 ■ 6.00 Суглинок полутвердый, тяжёлый, серый, незасоленный, с частыми прослоями и Подземные воды не вскрыты линзами песка ожелезнённого, с ■ 7.00 включениями гальки и гравия осадочных и кристаллических пород 3.00 8.00 148.97 *777* **9**.00 Песок средней крупности, плотный, малой ZZZ степени водонасыщения, коричневый, серый, серо-коричневый, серо-жёлтый, 0 2 неоднородный, с частыми прослоями суглинка, местами ожелезнённый, незасоленный **11.50** 4.40 | 12.40 144.57 ▲ 13.00 ▲ 13.50 **1**5.50 К1 **18.00** Песок мелкий, плотный, малой степени водонасыщения, серо-белый, белый, серо-рыжий, жёлто-оранжевый, с частыми прослойками суглинка, местами M ожелезнённый, незасоленный 131.97 12.60 25.00

Изм.	Кол.уч	Лист	№ док.	Подп.	Дата

Согласовано

Взам.инв.N

Подп. и дата

Инв. N подл.

Лист

4

Масштаб верт.: 1:100 Скважина №: 15 Отметка устья: 156.36 м Общая глубина: 25.00 м Дата бурения: май 2018 год. Абс. отметка подошвы слоя, м Сведения о пробах Мощность слоя, м Сведения о воде Геолого-литологический разрез Глубина слоя, м Номера ИГЭ Геоиндекс Наименование пород и их характеристика Насыпной грунт - смесь почвы, суглинка, щебня, thIV песка, с поверхности асфальтобетон 3.30 3.30 153.06 Суглинок твердый, лёгкий, коричневый, ■ 4.00 серо-коричневый, бурый, незасоленный, песчанистый, с частыми прослоями и линзами песка ожелезнённого, с включениями гальки и ■ 5.00 гравия осадочных и кристаллических пород 2.20 | 5.50 150.86 **★** 6.00 Суглинок полутвердый, тяжёлый, серый, незасоленный, с частыми прослоями и линзами песка ожелезнённого, с **7**.00 включениями гальки и гравия осадочных и кристаллических пород 2.40 7.90 148.46 ZZZ **8.50** Песок средней крупности, плотный, малой степени водонасыщения, коричневый, серый, серо-коричневый, серо-жёлтый, 0 неоднородный, с частыми прослоями суглинка, местами ожелезнённый, **1**0.50 незасоленный 3.10 11.00 145.36 **16.00** К1 Песок мелкий, плотный, малой степени водонасыщения, серо-белый, белый, серо-рыжий, жёлто-оранжевый, с частыми Согласовано / M прослойками суглинка, местами ожелезнённый, незасоленный **22.00** Взам.инв.N **23.00 24.00** 14.00 25.00 131.36 Подп. и дата Инв. И подл. Лист 86-05-2018-ИГИ-3.4 5 Кол.уч Лист № док.

Подп.

Изм.

Дата

<u>15</u>5 Скважина/ТСЗ №: 16 Масштаб верт.: 1:100 Отметка устья: 156.33 м Общая глубина: 25.00 м Дата бурения: май 2018 год. Σ Сведения о пробах Абс. отметка подошвы слоя, м Мощность слоя, м Сведения о воде Геолого-литологический разрез Глубина слоя, м Номера ИГЭ Геоиндекс Наименование пород и их характеристика Насыпной грунт - смесь почвы, суглинка, щебня, thIV песка, с поверхности асфальтобетон 3.20 3.20 153.13 Суглинок твердый, лёгкий, коричневый, серо-коричневый, бурый, незасоленный, 4.00 песчанистый, с частыми прослоями и линзами 1.30 4.50 151.83 песка ожелезнённого, с включениями гальки и гравия осадочных и кристаллических пород **▲** 5.00 g⁰Idns **6**.00 Суглинок полутвердый, тяжёлый, серый, незасоленный, с частыми прослоями и 4 линзами песка ожелезнённого, с включениями гальки и гравия осадочных и кристаллических пород Подземные воды не вскрыты 3.50 8.00 148.33 **8.50** *777.* Песок средней крупности, плотный, малой степени водонасыщения, коричневый, серый, серо-коричневый, серо-жёлтый, 0 **1**0.00 неоднородный, с частыми прослоями суглинка, местами ожелезнённый, незасоленный **11.00** 3.30 11.30 145.03 **12.00** ■ 13.00 ■ 15.00 К1 Песок мелкий, плотный, малой степени Согласовано (M) водонасыщения, серо-белый, белый, серо-рыжий, жёлто-оранжевый, с частыми прослойками суглинка, местами ожелезнённый, незасоленный ■ 20.00 Взам.инв.N 13.70 25.00 131.33 Подп. и дата Инв. N подл Лист 86-05-2018-ИГИ-3.4 6 Лист № док. Подп. Дата